【題目】知圖①,在數(shù)軸上有一條線(xiàn)段,點(diǎn)表示的數(shù)分別是和.
(1)線(xiàn)段____________;
(2)若是線(xiàn)段的中點(diǎn),則點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)為________;
(3)若為線(xiàn)段上一點(diǎn).如圖②,以點(diǎn)為折點(diǎn),將此數(shù)軸向右對(duì)折;如圖③,點(diǎn)落在點(diǎn)的右邊點(diǎn)處,若,求點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)是多少?
【答案】(1)9;(2)-6.5;(3)-6.
【解析】
(1)根據(jù)數(shù)軸上兩點(diǎn)間的距離公式解決即可;
(2)根據(jù)中點(diǎn)的性質(zhì),計(jì)算即可;
(3)設(shè)AB'為x,根據(jù)題AB'與B'C的關(guān)系,將B'C用x表示出來(lái),然后根據(jù)AC、AB、BC的關(guān)系,將AB用x表示出來(lái),計(jì)算出x的值,即可求出AC的值,然后根據(jù)點(diǎn)A的坐標(biāo)求出點(diǎn)C在數(shù)軸上的對(duì)應(yīng)的數(shù)即可.
(1)AB的長(zhǎng)度為.
(2)M是線(xiàn)段AB的中點(diǎn),所以M點(diǎn)在數(shù)軸上對(duì)應(yīng)的點(diǎn)為.
(3)設(shè)AB'=,
∵AB'=B'C,則B'C=.
∴由題意BC=B'C=,
∴AC=B'C-AB'=,
∴AB=AC+BC=AC+B'C=,
即,
∴,
∴AC=4,
又∵點(diǎn)A表示的數(shù)為-2,
∴-2-4=-6,
∴點(diǎn)C表示的數(shù)為-6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形BCDE的各邊分別平行于x軸與y軸,物體甲和物體乙由點(diǎn)A(2,0)同時(shí)出發(fā),沿矩形BCDE的邊作環(huán)繞運(yùn)動(dòng),物體甲按逆時(shí)針?lè)较蛞?/span>1個(gè)單位/秒勻速運(yùn)動(dòng),物體乙按順時(shí)針?lè)较蛞?/span>2個(gè)單位/秒勻速運(yùn)動(dòng),則兩個(gè)物體運(yùn)動(dòng)后的第2018次相遇地點(diǎn)的坐標(biāo)是( )
A. (1,﹣1) B. (2,0) C. (﹣1,1) D. (﹣1,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC=4,D是BC上一個(gè)動(dòng)點(diǎn),連接AD,以AD為邊向右側(cè)作等腰直角△ADE,其中∠ADE=90°.
(1)如圖2,G,H分別是邊AB,BC的中點(diǎn),連接DG,AH,EH.求證:△AGD∽△AHE;
(2)如圖3,連接BE,直接寫(xiě)出當(dāng)BD為何值時(shí),△ABE是等腰三角形;
(3)在點(diǎn)D從點(diǎn)B向點(diǎn)C運(yùn)動(dòng)過(guò)程中,求△ABE周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】電影“阿凡達(dá)”自上映以來(lái)取得了空前的票房收入,某小區(qū)居民決定通過(guò)居委會(huì)向影院購(gòu)買(mǎi)一些3D票供每戶(hù)家庭觀看,最終購(gòu)得成人票數(shù)量是學(xué)生(孩子)票數(shù)量的3倍,購(gòu)買(mǎi)的總費(fèi) 用不低干2200元,但不高于2500元
(1)電影院成人票售價(jià)20元/人,學(xué)生票售價(jià)為50元/人,問(wèn):有哪幾種購(gòu)買(mǎi)方案?
(2)在(1)的方案中,哪一種方案的總費(fèi)用最少?最少費(fèi)用是多少元?
(3)由于當(dāng)天電影院同時(shí)播放“拆彈部隊(duì)”,故決定成人票打九折,學(xué)生票打八折,用(2)中的最少費(fèi)用最多還可以多買(mǎi)多少?gòu)埑扇似焙蛯W(xué)生票?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,點(diǎn),,都是格點(diǎn).
(1)將向左平移6個(gè)單位長(zhǎng)度得到,請(qǐng)畫(huà)出;
(2)將繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)得到,請(qǐng)畫(huà)出;
(3)作出關(guān)于直線(xiàn)對(duì)稱(chēng)的,使,,的對(duì)稱(chēng)點(diǎn)分別是,,;
(4)與成______,與成______(填“中心對(duì)稱(chēng)”或“軸對(duì)稱(chēng)”).如果成中心對(duì)稱(chēng)請(qǐng)你在圖中確定其對(duì)稱(chēng)中心點(diǎn)的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 ,∠E=∠F=90°,∠B=∠C,AC=AB,給出下列結(jié)論:① ∠1=∠2;② BE=CF;③ △ACN≌△ABM;④ CD=DN,其中正確的結(jié)論有( )個(gè)
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,O,B三點(diǎn)在同一直線(xiàn)上,∠BOD與∠BOC互補(bǔ).
(1)∠AOC與∠BOD的度數(shù)相等嗎,為什么?
(2)已知OM平分∠AOC,若射線(xiàn)ON在∠COD的內(nèi)部,且滿(mǎn)足∠AOC與∠MON互余;
①∠AOC=32°,求∠MON的度數(shù);
②試探究∠AON與∠DON之間有怎樣的數(shù)量關(guān)系,請(qǐng)寫(xiě)出結(jié)論并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB =90°,AC = BC =2,AB =,點(diǎn)P是AB邊上的點(diǎn)(異于點(diǎn)A,B),點(diǎn)Q是BC邊上的點(diǎn)(異于點(diǎn)B,C),且∠CPQ =45°.當(dāng)△CPQ是等腰三角形時(shí),CQ的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司招聘職員兩名,對(duì)甲、乙、丙、丁四名候選人進(jìn)行了筆試和面試,然后再按筆試占、面試占計(jì)算候選人的綜合成績(jī).他們的各項(xiàng)成績(jī)?nèi)缦卤硭荆?/span>
候選人 | 筆試成績(jī)/分 | 面試成績(jī)/分 |
甲 | ||
乙 | ||
丙 | ||
丁 |
(1)現(xiàn)得知候選人丙的綜合成績(jī)?yōu)?/span>分,求表中的值
(2)求出其余三名候選人的綜合成績(jī),并以綜合成績(jī)排序確定所要招聘的前兩名的人選.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com