【題目】如圖1,在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)A,與y軸交于點(diǎn)B;拋物線a≠0)過(guò)A,B兩點(diǎn),與x軸交于另一點(diǎn)C(-10),拋物線的頂點(diǎn)為D

1)求拋物線的解析式;

2)在直線AB上方的拋物線上有一動(dòng)點(diǎn)E,求出點(diǎn)E到直線AB的距離的最大值;

3)如圖2,直線AB與拋物線的對(duì)稱軸相交于點(diǎn)F,點(diǎn)P在坐標(biāo)軸上,且點(diǎn)P到直線 BD,DF的距離相等,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

【答案】1;(2E到直線AB的距離的最大值為;(3)點(diǎn)P的坐標(biāo)為:(0,1),(0),(0,),(7,0).

【解析】

1)由一次函數(shù)求出點(diǎn)A,B的坐標(biāo),再將AC坐標(biāo)代入中即可解答;

2)通過(guò)證明ENM∽△AOB,得到EN=,設(shè)Em,),Mm,),表達(dá)出EM,再由二次函數(shù)的性質(zhì)求出最大值;
3)分當(dāng)點(diǎn)P在∠BDF平分線上、外角平分線上兩種情況,分別求解即可.

解:(1)在中,當(dāng)x=0時(shí),y=;當(dāng)y=0時(shí),x=3,

A(30),B(0,),

A(30),C(1,0)代入得:

,解得:,

拋物線的解析式為:

2)過(guò)點(diǎn)EEMx軸交ABM,過(guò)EENABN,

點(diǎn)EAB的距離為EN,

EM∥y軸,

∴∠EMN=∠OBA,

又∵∠ENM=∠AOB,

ENM∽△AOB

,

RtAOB中,OA=3,OB=,

由勾股定理得:AB=,

EN=

設(shè)Em),Mm,),

EM=-(=

EN=

=

=,

當(dāng)m=時(shí),E到直線AB的距離的最大值為

3點(diǎn)P到直線BD,DF的距離相等,

點(diǎn)PBDFBDF鄰補(bǔ)角的平分線上,如圖所示,

,則 D點(diǎn)坐標(biāo)為(1,3),

B0,),

BD=

DP平分BDF,

∴∠BDP=∠PDF

DFy軸,

∴∠BPD=∠PDF

∴∠BPD=∠BDP,

BD=BP,

P(0,1),

設(shè)直線PD的解析式為:y=kx+n,

n=1,k+n=3,

即直線PD的解析式為:y=2x+1

當(dāng)y=0時(shí),x=,

當(dāng)PBDF的角平分線上時(shí),坐標(biāo)為(0,1)或(,0);

同理可得:當(dāng)PBDF鄰補(bǔ)角的平分線上時(shí),坐標(biāo)為:(0,)或(7,0),

綜上所述,點(diǎn)P的坐標(biāo)為:(0,1),(,0),(0,),(7,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C的坐標(biāo)為(m,0)(m0),點(diǎn)D(m1)BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B的對(duì)應(yīng)點(diǎn)E落在坐標(biāo)平面內(nèi),當(dāng)△ADE是等腰直角三角形時(shí),點(diǎn)E的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,熒光屏上的甲、乙兩個(gè)光斑(可看作點(diǎn))分別從相距8cmA,B兩點(diǎn)同時(shí)開始沿線段AB運(yùn)動(dòng),運(yùn)動(dòng)工程中甲光斑與點(diǎn)A的距離S1(cm)與時(shí)間t(s)的函數(shù)關(guān)系圖象如圖2,乙光斑與點(diǎn)B的距離S2(cm)與時(shí)間t(s)的函數(shù)關(guān)系圖象如圖3,已知甲光斑全程的平均速度為1.5cm/s,且兩圖象中P1O1Q1P2Q2O2,下列敘述正確的是(  )

A. 甲光斑從點(diǎn)A到點(diǎn)B的運(yùn)動(dòng)速度是從點(diǎn)B到點(diǎn)A的運(yùn)動(dòng)速度的4

B. 乙光斑從點(diǎn)AB的運(yùn)動(dòng)速度小于1.5cm/s

C. 甲乙兩光斑全程的平均速度一樣

D. 甲乙兩光斑在運(yùn)動(dòng)過(guò)程中共相遇3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】哈市某中學(xué)為了豐富校園文化生活.校學(xué)生會(huì)決定舉辦演講、歌唱、繪畫、舞蹈四項(xiàng)比賽,要求每位學(xué)生都參加.且只能參加一項(xiàng)比賽.圍繞你參賽的項(xiàng)目是什么?(只寫一項(xiàng))”的問(wèn)題,校學(xué)生會(huì)在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查。將調(diào)查問(wèn)卷適當(dāng)整理后繪制成如圖所示的不完整的條形統(tǒng)計(jì)圖.其中參加舞蹈比賽的人數(shù)與參加歌唱比賽的人數(shù)之比為13.請(qǐng)你根據(jù)以上信息回答下列問(wèn)題:

(1)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

(2)在這次調(diào)查中,一共抽取了多少名學(xué)生?

(3)如果全校有680名學(xué)生,請(qǐng)你估計(jì)這680名學(xué)生中參加演講比賽的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B、F、C、E在一條直線上,FBCEABED,ACFD,ADBEO

1)求證:△ABC≌△DEF;

2)求證:ADBE互相平分;

3)若BF5,FC4,直接寫出EO的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在第二屆數(shù)字中國(guó)建設(shè)峰會(huì)召開之際,某校舉行了第二屆掌握新技術(shù),走進(jìn)數(shù)時(shí)代信息技術(shù)應(yīng)用大賽,將該校八年級(jí)參加競(jìng)賽的學(xué)生成績(jī)統(tǒng)計(jì)后,繪制成如下統(tǒng)計(jì)圖表(不完整):

成績(jī)頻數(shù)分布統(tǒng)計(jì)表

組別

A

B

C

D

成績(jī)x(分)

60≤x70

70≤x80

80≤x90

90≤x100

人數(shù)

10

m

16

4

請(qǐng)觀察上面的圖表,解答下列問(wèn)題:

1)統(tǒng)計(jì)表中m   ,D組的圓心角為   °

2D組的4名學(xué)生中,有2名男生和2名女生.從D組隨機(jī)抽取2名學(xué)生參加5G體驗(yàn)活動(dòng),請(qǐng)你畫出樹狀圖或用列表法求:

①恰好1名男生和1名女生被抽取參加5G體驗(yàn)活動(dòng)的概率;

②至少1名女生被抽取參加5G體驗(yàn)活動(dòng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)的經(jīng)濟(jì)總量已居世界第二,人民富裕了,有的家庭擁有多種車型.小紅家有A、B、C三種車型,已知3A型車的載重量與4B型車的載重量之和剛好等于2C型車的載重量;4B型車的載重量與1C型車的載重量之和剛好等于6A型車的載重量.現(xiàn)有一批貨物,原計(jì)劃用C型車10次可全部運(yùn)完,由于C型車另有運(yùn)輸任務(wù),現(xiàn)在安排A型車單獨(dú)裝運(yùn)12次,余下的貨物由B型車單獨(dú)裝運(yùn)剛好可以全部運(yùn)完,則B型車需單獨(dú)裝運(yùn)_____次(每輛車每次都滿載重量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運(yùn)貨18噸,2輛大貨車與6輛小貨車一次可以運(yùn)貨17.

(1)請(qǐng)問(wèn)1輛大貨車和1輛小貨車一次可以分別運(yùn)貨多少噸?

(2)目前有33噸貨物需要運(yùn)輸,貨運(yùn)公司擬安排大小貨車共計(jì)10輛,全部貨物一次運(yùn)完,其中每輛大貨車一次運(yùn)費(fèi)花費(fèi)130元,每輛小貨車一次運(yùn)貨花費(fèi)100元,請(qǐng)問(wèn)貨運(yùn)公司應(yīng)如何安排車輛最節(jié)省費(fèi)用?

查看答案和解析>>

同步練習(xí)冊(cè)答案