【題目】如圖,E,F是正方形ABCD的對(duì)角線AC上的兩點(diǎn),AE=CF,連接DE、BE、BF、DF.
(1)求證:四邊形BEDF為菱形;
(2)若菱形BEDF的邊長為2,AE=2,求正方形ABCD的邊長.
【答案】(1)見解析;(2)AB=4.
【解析】
(1)連結(jié)BD交AC于點(diǎn)O,證明OE=OF,得到四邊形BEDF為平行四邊形,再證明EB=ED,得到四邊形BEDF是菱形;
(2)根據(jù)△EOB是直角三角形,構(gòu)造方程求出OA,根據(jù)正方形性質(zhì)求出AB即可.
(1)證明:連結(jié)BD交AC于點(diǎn)O,
∵四邊形ABCD為正方形,
∴OA=OB=OC=OD,AC⊥BD,
又∵AE=CF,
∴OE=OF,
∴四邊形BEDF為平行四邊形,
∵EF垂直平分BD,
∴EB=ED,
∴四邊形BEDF是菱形;
(2)設(shè)AO=x,則OE=x﹣2,
在Rt△EOB中,BE2=BO2+OE2,
即20=x2+(x﹣2)2,
解得:x=4或﹣2(舍),
∴AO=4,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△CBD,若點(diǎn)B的坐標(biāo)為(4,0),則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有兩張矩形紙片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把紙片ABCD交叉疊放在紙片EFGH上,使重疊部分為平行四邊形,且點(diǎn)D與點(diǎn)G重合.當(dāng)兩張紙片交叉所成的角α最小時(shí),sinα等于( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:是經(jīng)過點(diǎn)A的一條直線,點(diǎn)C是直線左側(cè)的一個(gè)動(dòng)點(diǎn),且滿足,連接,將線段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到線段,在直線上取一點(diǎn)B,使.
(1)若點(diǎn)C位置如圖1所示.
①依據(jù)題意補(bǔ)全圖1;
②求證:;
(2)連接,寫出一個(gè)的值,使得對(duì)于任意一點(diǎn)C,總有,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)A(﹣5,0)作垂直于x軸的直線AB,直線y=x+b與雙曲線y=﹣相交于點(diǎn)P(x1,y1)、Q(x2,y2),與直線AB相交于點(diǎn)R(x3,y3).若y1>y2>y3時(shí),則b的取值范圍是( )
A.b>4B.b>4或b<﹣4
C.﹣<b<﹣4或b>4D.4<b<或b<﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華商場銷售某種冰箱,每臺(tái)進(jìn)貨價(jià)為2500元.市場調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8臺(tái);而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4臺(tái).商場要想使這種冰箱的銷售利潤平均每天達(dá)到5000元,設(shè)每臺(tái)冰箱的定價(jià)為x元,則x滿足的關(guān)系式為( )
A. (x2500)(8+4×)=5000 B. (2900x2500)(8+4×)=5000
C. (x2500)(8+4×)=5000 D. (2900x)(8+4×)=5000
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人同時(shí)登同一座山,甲乙兩人距地面的高度(米)與登山時(shí)間 (分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)乙在提速前登山的速度是______米/分鐘,乙在 地提速時(shí)距地面的高度為 __________米.
(2)若乙提速后,乙比甲提前了9分鐘到達(dá)山頂,請求出乙提速后 和 之間的函數(shù)關(guān)系式.
(3)登山多長時(shí)間時(shí),乙追上了甲,此時(shí)甲距 地的高度為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn)(在的左側(cè)).
(1)求點(diǎn)的坐標(biāo)及拋物線的對(duì)稱軸;
(2)已知點(diǎn),若拋物線與線段有公共點(diǎn),請結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+1與x軸和y軸分別交于B0,B1兩點(diǎn),將B1B0繞B1逆時(shí)針旋轉(zhuǎn)135°得B1B0′,過點(diǎn)B0'作y軸平行線,交直線y=x+1于點(diǎn)B2,記△B1B0B2的面積為S1;再將B2B1繞B2逆時(shí)針旋轉(zhuǎn)135°得B2B1',過點(diǎn)B1'作y軸平行線,交直線y=x+l于點(diǎn)B3,記△B2B1'B3的面積為S2…以此類推,則△BnBn﹣1'Bn+1的面積為Sn=( )
A.()nB.()n﹣1C.2nD.2n﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com