【題目】如圖,AB是反比例函數(shù)y在第一象限內(nèi)的圖象上的兩點,且A、B兩點的橫坐標(biāo)分別是48,則OAB的面積是_____

【答案】6

【解析】

先根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征及A,B兩點的橫坐標(biāo),求出A42),B8,1).再過A,B兩點分別作ACx軸于CBDx軸于D,根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出SAOCSBOD×84.根據(jù)S四邊形AODBSAOB+SBODSAOC+S梯形ABDC,得出SAOBS梯形ABDC,利用梯形面積公式求出S梯形ABDCBD+ACCD1+2×46,從而得出SAOB6

解:∵A,B是反比例函數(shù)y在第一象限內(nèi)的圖象上的兩點,且AB兩點的橫坐標(biāo)分別是48,

∴當(dāng)x4時,y2,即A42),

當(dāng)x8時,y1,即B8,1).

如圖,過A,B兩點分別作ACx軸于C,BDx軸于D,則SAOCSBOD×84

S四邊形AODBSAOB+SBODSAOC+S梯形ABDC,

SAOBS梯形ABDC

S梯形ABDCBD+ACCD1+2×46,

SAOB6

故答案為:6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,拋物線的頂點為,與軸的交點為

1)求點,的坐標(biāo);

2)已知點(4,2),將拋物線向上平移得拋物線,點平移后的對應(yīng)點為,且,求拋物線的解析式;

3)將拋物線沿軸翻折,得拋物線,拋物線軸交于點(點在點的左側(cè)),與軸交于點,平行于軸的直線與拋物線交于點(,),(,),與直線交于點(),若,結(jié)合函數(shù)的圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是平行四邊形,CD為⊙O的切線,點C是切點.

(1)如圖1,若AB為⊙O直徑,求四邊形ABCD各內(nèi)角的度數(shù);

(2)如圖2,若AB為弦,⊙O的半徑為3cm,當(dāng)BC=2cm時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E是邊AD上一點(不與點A重合),連結(jié)BEPQ垂直平分BE,分別交AD、BEBC于點P、O、Q,連結(jié)BPEQ.求證:四邊形BPEQ是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校的實驗樓對面是一幢教學(xué)樓,小敏在實驗樓的窗口C處測得教學(xué)樓頂部D處的仰角為18°,教學(xué)樓底部B處的俯角為20°,教學(xué)樓的高BD=21m,求實驗樓與教學(xué)樓之間的距離AB(結(jié)果保留整數(shù)).(參考數(shù)據(jù):tan18°≈0.32,tan20°≈0.36)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某種電動汽車的性能,對這種電動汽車進(jìn)行了抽檢,將一次充電后行駛的里程數(shù)分為A,BC,D四個等級,其中相應(yīng)等級的里程依次為200千米,210千米,220千米,230千米,獲得如下不完整的統(tǒng)計圖,根據(jù)信息解答下列問題:

1)問這次被抽檢的電動汽車共有幾輛?并補(bǔ)全條形統(tǒng)計圖:

2)求電動汽車一次充電后行駛里程數(shù)的中位數(shù)、眾數(shù):

3)一次充電后行駛里程數(shù)220千米以上(含220千米)為優(yōu)質(zhì)等級,若全市有這種電動汽車1200輛,估計優(yōu)質(zhì)等級的電動汽車約為多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知斜坡CD的長度為20m,DE的長為10m,則樹AB的高度是( m

A.20B.30C.30D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D04),B60).若反比例函數(shù)y=x0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.設(shè)直線EF的解析式為y=k2x+b

1)求反比例函數(shù)和直線EF的解析式;

2)求OEF的面積;

3)請結(jié)合圖象直接寫出不等式k2x+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小輝為了解市政府調(diào)整水價方案的社會反響,隨機(jī)訪問了自己居住在小區(qū)的部分居民,就每月每戶的用水量調(diào)價對用水行為改變兩個問題進(jìn)行調(diào)查,并把調(diào)查結(jié)果整理成下面的圖1,圖2

小輝發(fā)現(xiàn)每月每戶的用水量在之間,有7戶居民對用水價格調(diào)價漲幅抱無所謂,不用考慮用水方式的改變.根據(jù)小軍繪制的圖表和發(fā)現(xiàn)的信息,完成下列問題:

(1) ,小明調(diào)查了 戶居民,并補(bǔ)全圖1;

(2)每月每戶用水量的中位數(shù)落在 之間,眾數(shù)落在 之間;

(3)如果小明所在的小區(qū)有1200戶居民,請你估計視調(diào)價漲幅采取相應(yīng)的用水方式改變的居民戶數(shù)多少?

查看答案和解析>>

同步練習(xí)冊答案