【題目】已知拋物線的對(duì)稱軸為直線,與軸的一個(gè)交點(diǎn)為,且,下列結(jié)論:①;;.其中正確結(jié)論的個(gè)數(shù)是( )

A. 0 B. 1 C. 2 D. 3

【答案】C

【解析】

當(dāng)取x=-3時(shí),y=9a-3b+c>0;由對(duì)稱軸是x=-1可以得到b=2a,而a>0,所以得到b>a,再取x=1時(shí),可以得到y=a+b+c=a+2a+c=3a+c>0.所以可以判定哪幾個(gè)正確.

解:∵y=ax2+bx+c(a>0)的對(duì)稱軸為直線x=-1,

x軸的一個(gè)交點(diǎn)為(x1,0),

0<x1<1,

∴x=-3時(shí),y=9a-3b+c>0;

∵對(duì)稱軸是x=-1,則=-1,

∴b=2a.

∵a>0,

∴b>a;

再取x=1時(shí),y=a+b+c=a+2a+c=3a+c>0.

∴①、③正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCADE都是等腰直角三角形,且∠BAC=DAE=90°.

1)如圖①,點(diǎn)D、E分別在線段AB、AC. 請(qǐng)直接寫出線段BDCE的位置關(guān)系: ;

2)將圖①中的ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到如圖②的位置時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)利用圖②證明;若不成立,請(qǐng)說明理由;

3)如圖③,取BC的中點(diǎn)F,連接AF,當(dāng)點(diǎn)D落在線段BC上時(shí),發(fā)現(xiàn)AD恰好平分∠BAF,此時(shí)在線段AB上取一點(diǎn)H,使BH=2DF,連接HD,猜想線段HDBC的位置關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺(tái)的“中國(guó)詩詞大賽”節(jié)目文化品位高內(nèi)容豐富,某校初二年級(jí)模擬開展“中國(guó)詩詞大賽”比賽,對(duì)全年級(jí)同學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級(jí)并根據(jù)成績(jī)繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息回答下列問題

1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對(duì)應(yīng)的扇形的圓心角為 ,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.

2)此次比賽有四名同學(xué)活動(dòng)滿分,分別是甲、乙、丙、丁現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國(guó)詩詞大賽”比賽,請(qǐng)用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)一定的角度得到線段

(1)用直尺和圓規(guī)作出旋轉(zhuǎn)中心(不寫作法,保留作圖痕跡);

(2)連接、、,添加一定的條件,可以求出線段掃過的面積.(不再添加字母和輔助線,線段的長(zhǎng)可用、、表示,角的度數(shù)可用、、表示).你添加的條件是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,ABC是等邊三角形,點(diǎn)PBC上一動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)BC不重合),過點(diǎn)PPMACABM,PNABACN,連接BNCM

1)求證:PM+PNBC;

2)在點(diǎn)P的位置變化過程中,BNCM是否成立?試證明你的結(jié)論;

3)如圖②,作NDBCABD,則圖②成軸對(duì)稱圖形,類似地,請(qǐng)你在圖③中添加一條或幾條線段,使圖③成軸對(duì)稱圖形(畫出一種情形即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)價(jià)為每件元,現(xiàn)在的售價(jià)為每件元,每星期可賣出件.市場(chǎng)調(diào)查反映:如果每件售價(jià)每漲元(售價(jià)每件不能高于元),那么每星期少賣件.設(shè)每件售價(jià)為元(為非負(fù)整數(shù)),則若要使每星期的利潤(rùn)最大且每星期的銷量較大,應(yīng)為多少元?( )

A. 41 B. 42 C. 42.5 D. 43

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是正方形,DEF是等腰直角三角形,DEDF,MEF的中點(diǎn).

1)如圖1,當(dāng)點(diǎn)EAB上時(shí),求證:點(diǎn)F在直線BC上.

2)如圖2,在(1)的條件下,當(dāng)CMCF時(shí),求證:∠CFM22.5°

3)如圖3,當(dāng)點(diǎn)EBC上時(shí),若CM2,則BE的長(zhǎng)為   (直接寫出結(jié)果)(注:等腰直角三角形三邊之比為11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自2016年國(guó)慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營(yíng)商為提高其經(jīng)營(yíng)的A品牌共享單車的市場(chǎng)占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:

使用次數(shù)

0

1

2

3

4

5(含5次以上)

累計(jì)車費(fèi)

0

0.5

0.9

1.5

同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):

使用次數(shù)

0

1

2

3

4

5

人數(shù)

5

15

10

30

25

15

)寫出的值;

)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營(yíng)商在該校投放A品牌共享單車能否獲利? 說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的直徑為10,銳角ABC內(nèi)接于⊙O,BD⊥AC于點(diǎn)D,AB=8,則tanCBD的值等于(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案