【題目】某市為了節(jié)約用水,對(duì)自來(lái)水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過(guò)10噸的部分,按2/噸收費(fèi);超過(guò)10噸的部分按25/噸收費(fèi).

1)若黃老師家5月份用水16噸,問(wèn)應(yīng)交水費(fèi)多少元?

2)若黃老師家7月用水a噸,問(wèn)應(yīng)交水費(fèi)多少元?(用a的代數(shù)式表示)

【答案】135;(2) 當(dāng)0a≤10時(shí),應(yīng)交水費(fèi)為2a元;當(dāng)a10時(shí),應(yīng)交水費(fèi)為元.

【解析】試題(1)按照自來(lái)水的收費(fèi)標(biāo)準(zhǔn),黃老師應(yīng)交水費(fèi):10×2+(所用水的重量-10×25;(2)黃老師家7月用水a噸,根據(jù)a的大小及自來(lái)水的收費(fèi)標(biāo)準(zhǔn)可得黃老師應(yīng)繳納的水費(fèi)分當(dāng)0a≤10時(shí)和當(dāng)a10時(shí)兩種情況,根據(jù)這兩種情況分別表示出黃老師應(yīng)繳納的水費(fèi)即可.

試題解析:解:(1(元)答:應(yīng)交水費(fèi)35元.

2當(dāng)0a≤10時(shí),應(yīng)交水費(fèi)為2a(元).

當(dāng)a10時(shí),應(yīng)交水費(fèi)為:(元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)選項(xiàng)中,不是y關(guān)于x的函數(shù)的是( )

A.|y|=x﹣1 B.y= C.y=2x﹣7 D.y=x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知射線OC上的任意一點(diǎn)到AOB的兩邊的距離都相等,點(diǎn)DE、F分別為邊OC、OAOB上,如果要想證得OE=OF,只需要添加以下四個(gè)條件中的某一個(gè)即可,請(qǐng)寫(xiě)出所有可能的條件的序號(hào)__________

①∠ODE=ODF;②∠OED=OFD;ED=FD;EFOC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,拋物線軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)B的坐標(biāo)為(3,0),軸交于點(diǎn)C(0,-3),頂點(diǎn)為D

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo)

(2)聯(lián)結(jié)AC,BC,求∠ACB的正切值

(3)點(diǎn)Px軸上一點(diǎn)是否存在點(diǎn)P使得PBDCAB相似,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

(4)M是拋物線上一點(diǎn)點(diǎn)N,是否存在點(diǎn)N,使得以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo)若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,體育場(chǎng)內(nèi)一看臺(tái)與地面所成夾角為30°,看臺(tái)最低點(diǎn)A到最高點(diǎn)B的距離為10,AB兩點(diǎn)正前方有垂直于地面的旗桿DE.在A,B兩點(diǎn)處用儀器測(cè)量旗桿頂端E的仰角分別為60°15°(仰角即視線與水平線的夾角)

1)求AE的長(zhǎng);

2)已知旗桿上有一面旗在離地1米的F點(diǎn)處,這面旗以0.5/秒的速度勻速上升,求這面旗到達(dá)旗桿頂端需要多少秒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)處練習(xí)發(fā)球,將球從點(diǎn)正上方處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度與運(yùn)行的水平距離滿足關(guān)系式.已知球網(wǎng)與點(diǎn)的水平距離為,高度為,球場(chǎng)的邊界距點(diǎn)的水平距離為

)求的關(guān)系式(不要求寫(xiě)出自變量的取值范圍).

)球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,一次函數(shù)y=x+3的圖象分別與x軸、y軸相交于點(diǎn)A、B,且與經(jīng)過(guò)點(diǎn)C(20)的一次函數(shù)y=kx+b的圖象相交于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為4,直線CDy軸相交于點(diǎn)E

(1)直線CD的函數(shù)表達(dá)式為______;(直接寫(xiě)出結(jié)果)

(2)x軸上求一點(diǎn)P使△PAD為等腰三角形,直接寫(xiě)出所有滿足條件的點(diǎn)P的坐標(biāo).

(3)若點(diǎn)Q為線段DE上的一個(gè)動(dòng)點(diǎn),連接BQ.點(diǎn)Q是否存在某個(gè)位置,將△BQD沿著直線BQ翻折,使得點(diǎn)D恰好落在直線AB下方的y軸上?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是邊長(zhǎng)為4的正方形,點(diǎn)P是平面內(nèi)一點(diǎn).且滿足BP⊥PC,現(xiàn)將點(diǎn)P繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90度,則CQ的最大值=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

小偉遇到這樣一個(gè)問(wèn)題:如圖1,在ABC(其中∠BAC是一個(gè)可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊PBC,求AP的最大值.

小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點(diǎn)B為旋轉(zhuǎn)中心將ABP逆時(shí)針旋轉(zhuǎn)60°得到A′BC,連接A′A,當(dāng)點(diǎn)A落在A′C上時(shí),此題可解(如圖2).

請(qǐng)你回答:AP的最大值是   

參考小偉同學(xué)思考問(wèn)題的方法,解決下列問(wèn)題:

如圖3,等腰RtABC.邊AB=4,PABC內(nèi)部一點(diǎn),則AP+BP+CP的最小值是   .(結(jié)果可以不化簡(jiǎn))

查看答案和解析>>

同步練習(xí)冊(cè)答案