【題目】如圖,中,,,是角平分線,則的面積與面積的比值是( )
A. B. C. D.
【答案】C
【解析】
根據(jù)等腰三角形的兩個(gè)底角相等和三角形的內(nèi)角和定理,可以求得∠ABC=∠ACB=72°,根據(jù)角平分線定義,可得∠BCD=∠ACD=36°;根據(jù)兩角對應(yīng)相等,得△DBC∽△BCA,則相似三角形的面積比是相似比的平方.設(shè)AB=x,BC=y,根據(jù)等腰三角形的性質(zhì),則AD=CD=BC=y,則BD=x-y.根據(jù)相似三角形的性質(zhì)求得y:x的值即可.
設(shè)AB=x,BC=y.
∵△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°.
∵CD是角平分線,
∴∠BCD=∠ACD=36°.
∴AD=CD=BC=y,
∴BD=xy.
∵∠BCD=∠A=36°,∠B=∠ACB=72°,
∴△DBC∽△ABC.
∴.
即,
x2xyy2=0,
x=y(負(fù)值舍去).
則.
∴△DBC的面積與△ABC面積的比值是.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知矩形的邊長,,點(diǎn)是邊上的一動(dòng)點(diǎn)不同于、,是邊上的任意一點(diǎn),連接、,過作交于,作交于.設(shè)的長為,則的面積關(guān)于的函數(shù)關(guān)系式是( )
A. B.
C. . D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在Rt△ABC中, ∠ACB=90°,AC=BC, D是線段AB上一點(diǎn),連結(jié)CD,將線段CD繞點(diǎn)C 逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連結(jié)DE,BE.
(1)依題意補(bǔ)全圖形;
(2)若用含的代數(shù)式表示
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)A、點(diǎn)B分別是y軸、x軸上兩個(gè)動(dòng)點(diǎn),直角邊AC交x軸于點(diǎn)D,斜邊BC交y軸于點(diǎn)E;
(1)如圖(1),已知C點(diǎn)的橫坐標(biāo)為-1,直接寫出點(diǎn)A的坐標(biāo);
(2)如圖(2), 當(dāng)?shù)妊?/span>Rt△ABC運(yùn)動(dòng)到使點(diǎn)D恰為AC中點(diǎn)時(shí),連接DE,求證:∠ADB=∠CDE;
(3)如圖(3), 若點(diǎn)A在x軸上,且A(-4,0),點(diǎn)B在y軸的正半軸上運(yùn)動(dòng)時(shí),分別以OB、AB為直角邊在第一、二象限作等腰直角△BOD和等腰直角△ABC,連結(jié)CD交y軸于點(diǎn)P,問當(dāng)點(diǎn)B在y軸的正半軸上運(yùn)動(dòng)時(shí),BP的長度是否變化?若變化請說明理由,若不變化,請求出BP的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)C為AB中點(diǎn),CD=BE,CD∥BE.
(1)求證:△ACD≌△CBE;
(2)若∠D=35°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD相交于點(diǎn)O,AB⊥AC,AB=3,BC=5,點(diǎn)P從點(diǎn)A出發(fā),沿AD以每秒1個(gè)單位的速度向終點(diǎn)D運(yùn)動(dòng).連結(jié)PO并延長交BC于點(diǎn)Q.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)求BQ的長,(用含t的代數(shù)式表示)
(2)當(dāng)四邊形ABQP是平行四邊形時(shí),求t的值
(3)當(dāng)點(diǎn)O在線段AP的垂直平分線上時(shí),直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】( 1)計(jì)算: ﹣4sin30°+(2015﹣π)0﹣(﹣3)2
(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點(diǎn),AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當(dāng)AB=6時(shí),求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),若點(diǎn)P與△ABC三個(gè)頂點(diǎn)中的任意兩個(gè)頂點(diǎn)連接形成的三角形都是等腰三角形,則稱點(diǎn)P是△ABC的巧妙點(diǎn).
(1)如圖1,求作△ABC的巧妙點(diǎn)P(尺規(guī)作圖,不寫作法,保留作圖痕跡).
(2)如圖2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙點(diǎn)P (尺規(guī)作圖,不寫作法,保留作圖痕跡),并直接寫出∠BPC的度數(shù)是 .
(3)等邊三角形的巧妙點(diǎn)的個(gè)數(shù)有( )
A.2 B.6 C.10 D.12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com