【題目】如圖,在RtABC中,∠ACB=90°,AC=3BC=4,AB=5,且AC在直線1上,將ABC繞點A順時針旋轉到位置①,可得到點P1,將位置①的三角形繞點P1順時針旋轉到位置②,可得到點P2,將位置②的三角形繞點P2順時針旋轉到位置③,可得到點P3,,按此規(guī)律繼續(xù)旋轉,得到點P2018為止,則AP2018=___

【答案】8073

【解析】

觀察不難發(fā)現(xiàn),每旋轉3次為一個循環(huán)組依次循環(huán),用2018除以3求出循環(huán)組數(shù),然后列式計算即可得解.

RtABC中,∠ACB=90°,AC=3,BC=4,AB=5

∴將ABC繞點A順時針旋轉到①,可得到點P1,此時AP1=5;

將位置①的三角形繞點P1順時針旋轉到位置②,可得到點P2,此時AP2=5+4=9;

將位置②的三角形繞點P2順時針旋轉到位置③,可得到點P3,此時AP3=5+4+3=12

又∵2018÷3=672…2,

AP2018=672×12+5+4=8064+9=8073

故答案為:8073

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀其中的奧秘.

你知道怎樣迅速準確的計算出結果嗎?請你按下面的問題試一試:

,又,

,∴能確定59319的立方根是個兩位數(shù).

②∵59319的個位數(shù)是9,又,∴能確定59319的立方根的個位數(shù)是9

③如果劃去59319后面的三位319得到數(shù)59

,則,可得,

由此能確定59319的立方根的十位數(shù)是3

因此59319的立方根是39

1)現(xiàn)在換一個數(shù)195112,按這種方法求立方根,請完成下列填空.

①它的立方根是_______位數(shù).

②它的立方根的個位數(shù)是_______

③它的立方根的十位數(shù)是__________

195112的立方根是________

2)請直接填寫結果:

________

________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,射線OC在∠AOB的內部,圖中共有3個角:AOB、∠AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的三倍,則稱射線OC是∠AOB奇分線,如圖2,MPN=42°:

(1)過點P作射線PQ,若射線PQ是∠MPN奇分線”,求∠MPQ;

(2)若射線PE繞點PPN位置開始,以每秒的速度順時針旋轉,當∠EPN首次等于180°時停止旋轉,設旋轉的時間為().為何值時,射線PN是∠EPM奇分線”?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2011福建龍巖,23, 12分) 周六上午8:00小明從家出發(fā),乘車1小時到郊外某基地參加社會實踐活動,在基地活動2.2小時后,因家里有急事,他立即按原路以4千米/時的平均速度步行返回.同時爸爸開車從家出發(fā)沿同一路線接他,在離家28千米處與小明相遇。接到小明后保持車速不變,立即按原路返回.設小明離開家的時間為x小時,小名離家的路程y (干米) 與x (小時)之間的函致圖象如圖所示,

(1)小明去基地乘車的平均速度是________千米/小時,爸爸開車的平均速度應是________千米/小時;

(2)求線段CD所表示的函斂關系式;

(3)問小明能否在12:0 0前回到家?若能,請說明理由:若不能,請算出12:00時他離家的路程,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,某超市從底樓到二樓有一自動扶梯,圖2是側面示意圖.已知自動扶梯AB的坡度為1:2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為42°,求二樓的層高BC(精確到0.1米).
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將含45°角的直角三角尺放置在平面直角坐標系中,其中A(2,0)B(0,1),則直線BC的函數(shù)表達式為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k0)的圖象經過點(1,0)和(0,2).

(1)當﹣2x3時,求y的取值范圍;

(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)計算:

(2)化簡:

(3)化簡:

(4)化簡求值:,其中x=1009,y=

查看答案和解析>>

同步練習冊答案