【題目】計(jì)算:
(1)計(jì)算:
(2)化簡:
(3)化簡:
(4)化簡求值:,其中x=1009,y=
【答案】(1)-6;(2);(3);(4)-xy,.
【解析】
(1)原式利用乘方的意義,零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則計(jì)算即可得到結(jié)果;
(2)原式先利用同底數(shù)冪的乘法,積的乘方及冪的乘方運(yùn)算法則計(jì)算,再合并同類項(xiàng)即可得到結(jié)果;
(3)原式利用完全平方公式及平方差公式化簡即可得到結(jié)果.
(4)首先利用平方差公式計(jì)算,然后合并同類項(xiàng),最后利用多項(xiàng)式除以單項(xiàng)式的法則計(jì)算即可求解.
(1)
= -6;
(2)
=
= ;
(3)
=
=
= ;
(4)[(xy+2)(xy-2)-2x2y2+4]÷(xy)
=(x2y2-4-2x2y2+4)÷xy
= -xy,
當(dāng)x=1009,y= 時(shí),原式= = .
故答案為:(1)-6;(2);(3);(4)-xy,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,且AC在直線1上,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到位置①,可得到點(diǎn)P1,將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn)P2,將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn)P3,…,按此規(guī)律繼續(xù)旋轉(zhuǎn),得到點(diǎn)P2018為止,則AP2018=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點(diǎn)P,過點(diǎn)B的直線交OP的延長線于點(diǎn)C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為 ,OP=1,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC與BD相交于點(diǎn)O,點(diǎn)E是CD上的一點(diǎn),F是OD上的一點(diǎn),且EF∥AC,∠1=∠A.
(1)求證:AB∥CD.
(2)若∠BFE=70°,求:∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,AF∥CE,且交BC于點(diǎn)F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠1=65°,求∠B的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB于點(diǎn)D,AC=4,BC=3,DB=,
(1)求CD、AD的長
(2)判斷△ABC的形狀,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按圖填空,并注明理由.
已知: 如圖,∠1=∠2,∠3=∠E. 求證:AD∥BE.
證明: ∵∠1=∠2 (已知)
∴ BD ∥ ( )
∴ ∠E = ( )
又 ∵ ∠E=∠3 ( 已知 )
∴ ∠3=∠ ( )
∴ AD∥BE.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是腰長為1的等腰直角三形,以Rt△ABC的斜邊AC為直角邊,畫第二個(gè)等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個(gè)等腰Rt△ADE,…,依此類推,則第2018個(gè)等腰直角三角形的斜邊長是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com