【題目】如圖,△ABC中,D是AC的中點(diǎn),E是BC延長線上一點(diǎn),過A作AH∥BE,連接ED并延長交AB于F,交AH于H.
(1)求證:AH=CE;
(2)如果AB=4AF,EH=8,求DF的長.
【答案】(1)見解析;(2)2.
【解析】
(1)由于點(diǎn)D是AC的中點(diǎn),AH∥CE,由平行線的性質(zhì)知,可推出△ADH≌△CDE,故可得AH=CE;
(2)由平行線分對應(yīng)線段成比例的性質(zhì)知,AF∶AB=HF∶HE=1∶4,求得HF的值,由AH∥BE,D是AC的中點(diǎn)可得,點(diǎn)D也是EH的中點(diǎn),求得HD的值,故有FD=HD-HF.
(1)證明 ∵AH∥BE,D是AC的中點(diǎn),
∴△ADH≌△CDE,
∴AH=CE.
(2)解 ∵AB=4AF,AH∥BE,
∴AF∶AB=HF∶HE=1∶4,
∴HF=EH=2,
∵AH∥BE,D是AC的中點(diǎn),
∴點(diǎn)D也是EH的中點(diǎn),即HD=EH=4,
∴FD=HD-HF=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在研究相似問題時(shí),甲、乙同學(xué)的觀點(diǎn)如下:
甲:將邊長為3、4、5的三角形按圖1的方式向外擴(kuò)張,得到新三角形,它們的對應(yīng)邊間距為1,則新三角形與原三角形相似.
乙:將鄰邊為3和5的矩形按圖2的方式向外擴(kuò)張,得到新的矩形,它們的對應(yīng)邊間距均為1,則新矩形與原矩形相似.
對于兩人的觀點(diǎn),下列說法正確的是( )
A.甲對,乙不對 B.甲不對,乙對 C.兩人都對 D.兩人都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個圓形噴水池的中央垂直于水面安裝了一個柱形噴水裝置OA,O恰好在水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,且在過OA的任一平面上,按如圖所示建立直角坐標(biāo)系,水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式可以用y=﹣x2+bx+c表示,且拋物線經(jīng)過點(diǎn)B(,2),C(2,).請根據(jù)以上信息,解答下列問題;
(1)求拋物線的函數(shù)關(guān)系式,并確定噴水裝置OA的高度;
(2)噴出的水流距水面的最大高度是多少米?
(3)若不計(jì)其他因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+1與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,△BOC與△B′O′C′是以點(diǎn)A為位似中心的位似圖形,且相似比為1∶3,則點(diǎn)B的對應(yīng)點(diǎn)B′的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:選用同一長度單位量得兩條線段、的長度分別是,,那么就說兩條線段的比:
,如果把表示成比值,那么,或.請完成以下問題:
四條線段,,,中,如果________,那么這四條線段,,,叫做成比例線段.
已知,那么________,________
如果,那么成立嗎?請用兩種方法說明其中的理由.
如果,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1∥l2∥l3,一等腰直角三角形ABC的三個頂點(diǎn)A,B,C分別在l1,l2,l3上,∠ACB=90°,AC交l2于點(diǎn)D,已知l1與l2的距離為1,l2與l3的距離為3,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,給定銳角三角形ABC,小明希望畫正方形DEFG,使D,E位于邊BC上,F,G分別位于邊AC,AB上,他發(fā)現(xiàn)直接畫圖比較困難,于是他先畫了一個正方形HIJK,使得點(diǎn)H,I位于射線BC上,K位于射線BA上,而不需要求J必須位于AC上.這時(shí)他發(fā)現(xiàn)可以將正方形HIJK通過放大或縮小得到滿足要求的正方形DEFG.
閱讀以上材料,回答小明接下來研究的以下問題:
(1)如圖2,給定銳角三角形ABC,畫出所有長寬比為2:1的長方形DEFG,使D,E位于邊BC上,F,G分別位于邊AC,AB上.
(2)已知三角形ABC的面積為36,BC=12,在第(1)問的條件下,求長方形DEFG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2,3,根據(jù)圖中數(shù)據(jù)完成填空,再按要求答題:sin2A1+sin2B1=____;sin2A2+sin2B2=____;sin2A3+sin2B3=____.
(1)觀察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=____;
(2)如圖4,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的對邊分別是a,b,c,利用三角函數(shù)的定義和勾股定理證明你的猜想;
(3)已知∠A+∠B=90°,且sinA=,求sinB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD的對角線交于點(diǎn)O,點(diǎn)E在邊BC的延長線上,且OE=OB,連接DE.
(1)求證:△BDE是直角三角形;
(2)如果OE⊥CD,試判斷△BDE與△DCE是否相似,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com