【題目】如圖,菱形ABCD中,AB4,∠ABC60°,點E、F、G分別為線段BCCD,BD上的任意一點,則EG+FG的最小值為______

【答案】2

【解析】

根據(jù)軸對稱確定最短路線問題,作點E關(guān)于BD的對稱點E′,連接E′FBD的交點即為所求的點G,然后根據(jù)直線外一點到直線的所有連線中垂直線段最短的性質(zhì)可知E′FCDEG+FG的最小值,然后求解即可.

如圖,作CKABK,E關(guān)于BD的對稱點E′,作EHCDH,當(dāng)E′、G、F共線,點FH重合時,EG+GF的值最小,最小值為EH的長,即CK的長,

∵四邊形ABCD為菱形,AB4

∴BC=4,

∵∠ABC60°,

∴CK=2,

EG+FG的最小值為2

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB繞著點A逆時針方向旋轉(zhuǎn)120°得到線段AC,點B對應(yīng)點C,在∠BAC的內(nèi)部有一點PPA8,PB4,PC4,則線段AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角尺按如圖①方式拼接:含30°角的三角尺的長直角邊與含45°角的三角尺的斜邊恰好重合(在RtABC中,∠ACB90°,∠BAC30°;在RtACD中,∠ADC90°DAC45°)已知AB2PAC上的一個動點.

1)當(dāng)PDBC時,求∠PDA的度數(shù);

2)如圖②,若ECD的中點,求DEP周長的最小值;

3)如圖③,當(dāng)DP平分∠ADC時,在ABC內(nèi)存在一點Q,使得∠DQC=∠DPC,且CQ,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家的門框上裝有一把防盜門鎖(如圖1),其平面結(jié)構(gòu)圖如圖2所示,鎖身可以看成由兩條等弧,和矩形組成的,的圓心是倒鎖按鈕點.已知的弓形高,.當(dāng)鎖柄繞著點順時針旋轉(zhuǎn)至位置時,門鎖打開,此時直線所在的圓相切,且

1)求所在圓的半徑;

2)求線段的長度.(,結(jié)果精確到

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位有職工200人,其中青年職工(2035歲),中年職工(3550歲),老年職工(50歲及 以上)所占比例如扇形統(tǒng)計圖所示.

為了解該單位職工的健康情況,小張、小王和小李各自對單位職工進(jìn)行了抽樣調(diào)查,將收集的數(shù)據(jù)進(jìn)行了整理,繪制的統(tǒng)計表分別為表1、表2和表3

1:小張抽樣調(diào)查單位3名職工的健康指數(shù)

年齡

26

42

57

健康指數(shù)

97

79

72

2:小王抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

23

25

26

32

33

37

39

42

48

52

健康指數(shù)

93

89

90

83

79

75

80

69

68

60

3:小李抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

22

29

31

36

39

40

43

46

51

55

健康指數(shù)

94

90

88

85

82

78

72

76

62

60

根據(jù)上述材料回答問題:

1)小張、小王和小李三人中,誰的抽樣調(diào)查的數(shù)據(jù)能夠較好地反映出該單位職工健康情況,并簡要說明其他兩位同學(xué)抽樣調(diào)查的不足之處.

2)根據(jù)能夠較好地反映出該單位職工健康情況表,繪制出青年職工、中年職工、老年職工健康指數(shù)的平均數(shù)的直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,A、C分別在坐標(biāo)軸上,點B的坐標(biāo)為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.

(1)求反比例函數(shù)的解析式;

(2)若點P在y軸上,且OPM的面積與四邊形BMON的面積相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,AD=BD,EAB的中點,FCD上一點,連接EFBDG

1)如圖1,若DF=DG=2,AB=8,求EF的長;

2)如圖2,∠ADB=90°,點P為平行四邊形ABCD外部一點,且AP=AD,連接BPDP、EP,DPEF于點Q,若BPDPEFEP,求證:DQ=PQ

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】村村通公路政策,是近年來國家構(gòu)建和諧社會,支持新農(nóng)村建設(shè)的一項重大公共決策,是一項民心工程,惠民工程某鎮(zhèn)政府準(zhǔn)備向甲、乙兩個工程隊發(fā)包一段村通工程建設(shè)項目,經(jīng)調(diào)查:甲、乙兩隊單獨完成該工程,乙隊所需時間是甲隊的2倍;甲、乙兩隊共同完成該工程需30天;若甲隊每天所需勞務(wù)費(fèi)用為2400元,乙隊每天所需勞務(wù)費(fèi)用為1500元,從節(jié)約資金的角度考慮,應(yīng)選擇哪個工程隊更合算?

查看答案和解析>>

同步練習(xí)冊答案