【題目】1)如圖1,在矩形中,對(duì)角線相交于點(diǎn),過(guò)點(diǎn)作直線,且交于點(diǎn),交于點(diǎn),連接,且平分.

①求證:四邊形是菱形;

②直接寫出的度數(shù);

2)把(1)中菱形進(jìn)行分離研究,如圖2,分別在邊上,且,連接的中點(diǎn),連接,并延長(zhǎng)于點(diǎn),連接.試探究線段之間滿足的關(guān)系,并說(shuō)明理由;

3)把(1)中矩形進(jìn)行特殊化探究,如圖3,矩形滿足時(shí),點(diǎn)是對(duì)角線上一點(diǎn),連接,作,垂足為點(diǎn),交于點(diǎn),連接,交于點(diǎn).請(qǐng)直接寫出線段三者之間滿足的數(shù)量關(guān)系.

【答案】(1)①見(jiàn)解析;②60°;(2)見(jiàn)解析;(3)見(jiàn)解析.

【解析】

1)①由DOE≌△BOF,推出EO=OF,由OB=OD,推出四邊形EBFD是平行四邊形,再證明EB=ED即可;②先證明∠ABD=2ADB,推出∠ADB=30°,即可解決問(wèn)題;

2)延長(zhǎng),使得,連接,由菱形性質(zhì),,得,由此,由ASA可證得,由此,故

,由,可證得是等邊三角形,可得,,由SAS可證,可得,即是等邊三角形,

中,由,,可得,由此可得;

3)結(jié)論:EG2=AG2+CE2.如圖3中,將ADG繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到DCM,先證明DEG≌△DEM,再證明ECM是直角三角形即可解決問(wèn)題.

1)①證明:如圖1中,

∵四邊形是矩形,

,

中,

,

,

,

,

∴四邊形是平行四邊形,

,

∴四邊形是菱形.

②∵四邊形是菱形,

,

平分,

,

=,

∵四邊形是矩形,

A=,

+=,

==,

2)結(jié)論:

理由:如圖2中,延長(zhǎng),使得,連接

∵四邊形是菱形,,

,

中,

,

,

,

,

,

是等邊三角形,

,

中,

,

,,

,

,

,

,

,

是等邊三角形,

中,∵,

3)結(jié)論:

理由:如圖3中,將ADG繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到DCM

∵∠FAD+DEF=90°

AFED四點(diǎn)共圓,

∴∠EDF=DAE=45°,∠ADC=90°

∴∠ADF+EDC=45°,

∵∠ADF=CDM,

∴∠CDM+CDE=45°=EDG,

DEMDEG中,

,

∴△DEG≌△DEM,

GE=EM,

∵∠DCM=DAG=ACD=45°,AG=CM

∴∠ECM=90°,

EC2+CM2=EM2,

EG=EM,AG=CM,

GE2=AG2+CE2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,,且,與相交于點(diǎn),點(diǎn)邊的中點(diǎn),連接.

1)求證:

2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:

我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的“相似對(duì)角線”.

理解:

(1)如圖1,已知RtABC在正方形網(wǎng)格中,請(qǐng)你只用無(wú)刻度的直尺在網(wǎng)格中找到一點(diǎn)D,使四邊形ABCD是以AC為“相似對(duì)角線”的四邊形(保留畫圖痕跡,找出3個(gè)即可);

(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對(duì)角線BD平分∠ABC.

求證:BD是四邊形ABCD的“相似對(duì)角線”;

(3)如圖3,已知FH是四邊形EFCH的“相似對(duì)角線”,∠EFH=∠HFG=30°,連接EG,若EFG的面積為2,求FH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在《科學(xué)》課上,老師講到溫度計(jì)的使用方法及液體的沸點(diǎn)時(shí),好奇的王紅同學(xué)準(zhǔn)備測(cè)量食用油的沸點(diǎn),已知食用油的沸點(diǎn)溫度高于水的沸點(diǎn)溫度(),王紅家只有刻度不超過(guò)的溫度計(jì),她的方法是在鍋中倒入一些食用油,用煤氣灶均勻加熱,并每隔測(cè)量一次鍋中油溫,測(cè)量得到的數(shù)據(jù)如下表:

時(shí)間

0

10

20

30

40

油溫

10

30

50

70

90

王紅發(fā)現(xiàn),燒了時(shí),油沸騰了,則下列說(shuō)法不正確的是( )

A. 沒(méi)有加熱時(shí),油的溫度是

B. 加熱,油的溫度是

C. 估計(jì)這種食用油的沸點(diǎn)溫度約是

D. 每加熱,油的溫度升高

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在《幾何原本》中記載著這樣的題目:如果同一條線段被兩個(gè)分點(diǎn)先后分成相等和不相等的線段,以得到的各線段為邊作正方形,那么不相等的兩個(gè)正方形的面積之和等于原線段一半上的正方形與兩個(gè)分點(diǎn)之間一段上正方形的面積之和的兩倍.王老師帶領(lǐng)學(xué)生在閱讀的基礎(chǔ)上畫出的部分圖形如圖,已知線段,點(diǎn)為線段的中點(diǎn),點(diǎn)為線段上任意一點(diǎn)(不與重合),分別以為邊在的下方作正方形和正方形,以為邊在線段下方作正方形和正方形,則正方形與正方形的面積之和等于正方形和正方形面積之和的兩倍.

1)請(qǐng)你畫出正方形和正方形(不必尺規(guī)作圖);

2)設(shè),根據(jù)題意寫出關(guān)于的等式并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在綜合與實(shí)踐課上,同學(xué)們以“一個(gè)含的直角三角尺和兩條平行線”為背景開(kāi)展數(shù)學(xué)活動(dòng),如圖,已知兩直線和直角三角形,,.

操作發(fā)現(xiàn):

1)在如圖1中,,求的度數(shù);

2)如圖2,創(chuàng)新小組的同學(xué)把直線向上平移,并把的位置改變,發(fā)現(xiàn),說(shuō)明理由;

實(shí)踐探究:

3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,將如圖中的圖形繼續(xù)變化得到如圖,平分,此時(shí)發(fā)現(xiàn)又存在新的數(shù)量關(guān)系,請(qǐng)直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列算式:

1個(gè)式子:

2個(gè)式子:

3個(gè)式子:

4個(gè)式子:

1)可猜想第7個(gè)等式為

2)探索規(guī)律,若字母表示自然數(shù),請(qǐng)寫出第個(gè)等式

3)試證明你寫出的等式的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等邊△ABC中,DBC的中點(diǎn),PAB 邊上的一個(gè)動(dòng)點(diǎn),設(shè)AP=x,圖1中線段DP的長(zhǎng)為y,若表示yx的函數(shù)關(guān)系的圖象如圖2所示,則△ABC的面積為( )

A. 4 B. C. 12 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=∠2=90°,AD=AE,那么圖中有_____對(duì)全等三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案