【題目】有一個茶葉廠,該廠的茶葉主要有兩種銷售方式,一種方式是賣給茶葉經(jīng)銷商,另一種方式是在各超市的柜臺進(jìn)行銷售,每年該廠生產(chǎn)的茶葉都可以全部銷售,該茶葉廠每年可以生產(chǎn)茶葉100萬盒,其中,賣給茶葉經(jīng)銷商每盒茶葉的利潤y1(元)與銷售量x(萬盒)之間的函數(shù)關(guān)系如圖15所示;在各超市柜臺銷售的每盒利潤y2(元)與銷售量x(萬盒)之間的函數(shù)關(guān)系為:當(dāng)0x40, y2—0.75x+80,

當(dāng)40≤x≤100 y240.

1)寫出該茶葉廠賣給茶葉經(jīng)銷商的銷售總利潤z1(萬元)與其銷售量x(萬盒)之間的函數(shù)關(guān)系式,并指出x的取值范圍;

2)寫出該茶葉廠在各超市柜臺銷售的總利潤z2(萬元)與賣給茶葉經(jīng)銷商的銷售量x(萬盒)之間的函數(shù)關(guān)系式及x取值范圍;

3)求該茶葉廠每年的總利潤w(萬元)與賣給茶葉經(jīng)銷商的銷售量x(萬盒)之間的函數(shù)關(guān)系式,并幫助該茶葉廠確定賣給茶葉經(jīng)銷商和在各超市柜臺的銷量各為多少萬盒時,該公司的年利潤最大.

【答案】(1)z1x+x2z240x40003)該食品廠確定賣給各超市柜臺的銷量100萬盒時,該公司的年利潤最大

【解析】

1)當(dāng)0≤x60時,可直接得出該茶葉廠賣給茶葉經(jīng)銷商的銷售總利潤z1=5,再根據(jù)當(dāng)60≤x≤100時,每盒茶葉的利潤y1(元)與銷售量x(萬盒)之間的函數(shù)圖象過(60,5)(100,4)點,得出y1=-x+,最后乘以其銷售量x即可得出答案;
2)根據(jù)在各超市柜臺銷售的每盒利潤y2(元)與銷售量x(萬盒)之間的函數(shù)關(guān)系,用y2乘以賣給各超市柜臺的銷售量即可得出答案;
3)分別求出當(dāng)0≤x40,40≤x60,60≤x≤100時該茶葉廠每年的總利潤w(萬元)與賣給茶葉經(jīng)銷商的銷售量x(萬盒)之間的函數(shù)關(guān)系式為,再分別求出此時最大利潤,即可得出所以該茶葉廠確定賣給各超市柜臺的銷量多少萬盒時,該公司的年利潤最大.

1)當(dāng)0≤x60時,該食品廠賣給食品經(jīng)銷商的銷售總利潤z15,

∵當(dāng)60≤x≤100時,每盒食品的利潤y1(元)與銷售量x(萬盒)之間的函數(shù)圖象過(60,5)(100,4)點,∴當(dāng)60≤x≤100時,y1x+,

∴當(dāng)60≤x≤100時,該食品廠賣給食品經(jīng)銷商的銷售總利潤z1=(x+x

x+x.

2)∵賣給食品經(jīng)銷商的銷售量為x萬盒,

∴在各超市柜臺的銷售量為(100x)萬盒,,

∴當(dāng)0≤100x40,即60x≤100時,該食品廠在各超市柜臺銷售的總利潤z2(萬元)與賣給食品經(jīng)銷商的銷售量x(萬盒)之間的函數(shù)關(guān)系式為:

z2[0.75100x)+80]100x)=0.75x270x500,

當(dāng)40≤100x≤100,即0≤x≤60時,該食品廠在各超市柜臺銷售的總利潤z2(萬元)與賣給食品經(jīng)銷商的銷售量x(萬盒)之間的函數(shù)關(guān)系式為:

z240100x)=40x4000,

3)當(dāng)60x≤100時該食品廠每年的總利潤w(萬元)與賣給食品經(jīng)銷商的銷售量x(萬盒)之間的函數(shù)關(guān)系式為;

w(x+x)(0.75x270x500)

x+x+500,

∵拋物線開口向下,∴x1530/31時,w值最大,w2387.82萬元,

當(dāng)40≤x60時該食品廠每年的總利潤w(萬元)與賣給食品經(jīng)銷商的銷售量x(萬盒)間函數(shù)關(guān)系式為;

w5x40x400035x4000

∵該函數(shù)wx的增大而減小,

∴當(dāng)x0時,利潤最大,

此時的最大利潤為:35×040004000(萬元),

當(dāng)0≤x40時該食品廠每年的總利潤w(萬元)與賣給食品經(jīng)銷商的銷售量x(萬盒)之間的函數(shù)關(guān)系式為:

w5x(0.75x80)(100x),

0.75x2150x8000

∴當(dāng)x0時,利潤最大,

此時的最大利潤為8000(萬元),

∴該食品廠確定賣給各超市柜臺的銷量100萬盒時,該公司的年利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝即將到來的“三月三”壯族傳統(tǒng)節(jié)日,某校舉行了書法比賽,賽后隨機(jī)抽查部分參賽同學(xué)的成績,并制作成如下圖表:

請根據(jù)如上圖表提供的信息,解答下列問題:

1)這次隨機(jī)抽查了 名學(xué)生,表中的數(shù)

2)請在圖中補(bǔ)全頻數(shù)分布直方圖;

3)若繪制扇形統(tǒng)計圖,分?jǐn)?shù)段所對應(yīng)扇形的圓心角為 度;

4)全校共有名學(xué)生參加比賽,估計該校成績范圍內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.

(1)求證:ADC∽△CDB;

(2)若AC=2,AB=CD,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個實數(shù)根分別為x1,x2

(1)求m的取值范圍.

(2)若2(x1+x2)+ x1x2+10=0.求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點O與坐標(biāo)原點重合,頂點A,C分別在坐標(biāo)軸上,B4,2),過點D03)和E6,0)的直線分別與AB,BC交于點M,N

1)直接寫出直線DE的解析式_________;

2)若反比例函數(shù)yx0)的圖象與直線MN有且只有一個公共點,求m的值.

(3)在分別過M,B的雙曲線yx0)上是否分別存在點F,G使得B,M,F,G構(gòu)成平行四邊形,若存在則求出F點坐標(biāo), 若不存在則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O0,0),A0,1)是正方形OAA1B的兩個頂點,以OA1對角線為邊作正方形OA1A2B1,再以正方形的對角線OA2作正方形OA1A2B1,依次規(guī)律,則點A8的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+2分別交x軸、y軸于點A、B.點C的坐標(biāo)是(﹣1,0),拋物線yax2+bx﹣2經(jīng)過A、C兩點且交y軸于點D.點Px軸上一點,過點Px軸的垂線交直線AB于點M,交拋物線于點Q,連結(jié)DQ,設(shè)點P的橫坐標(biāo)為mm≠0).

(1)求點A的坐標(biāo).

(2)求拋物線的表達(dá)式.

(3)當(dāng)以B、DQ,M為頂點的四邊形是平行四邊形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A1的坐標(biāo)為(2,0),過點A1x軸的垂線交直線l:y=x于點B1,以原點O為圓心,OB1的長為半徑畫弧交x軸正半軸于點A2;再過點A2x軸的垂線交直線l于點B2,以原點O為圓心,以OB2的長為半徑畫弧交x軸正半軸于點A3;….按此作法進(jìn)行下去,則的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,∠ACB90°AC12,BC5P 是邊 AB 上的動點(不與點 B 重合),將BCP 沿 CP 所在的直線翻折,得到BCP,連接 BA,BA 長度的最小值是 m,BA 長度的最大值是 n,則 m+n 的值等于 ______

查看答案和解析>>

同步練習(xí)冊答案