【題目】已知:如圖,Rt△ABC中,∠ACB=90°,P是邊AB上一點(diǎn),AD⊥CP,BE⊥CP,垂足分別為D、E,已知AB=3,BC=3,BE=5.求DE的長.
【答案】
【解析】
在Rt△ABC中,由勾股定理求得AC的長,在Rt△BCE中,由勾股定理求得CE的長,由AD⊥CP,得∠DAC+∠ACD=90°,又∠ACD+∠BCE=90°,根據(jù)同角的余角相等可得∠DAC=∠BCE,再結(jié)合∠BEC=∠ADC=90°,易證△ACD∽△CBE,于是=,易求CD,進(jìn)而可求DE.
解:∵∠ACB=90°,AB=,BC=,
∴AC=3,
同理可求CE=,
∵AD⊥CP,
∴∠DAC+∠ACD=90°,
∵∠ACD+∠BCE=90°,
∴∠DAC=∠BCE,
又∵∠BEC=∠ADC=90°,
∴△ACD∽△CBE,
∴=,
∴=,
∴CD=,
∴DE=﹣=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的弦,點(diǎn)P是優(yōu)弧AB上的一個(gè)動(dòng)點(diǎn),連接AP,過點(diǎn)A作AP的垂線,交PB的延長線于點(diǎn)C.
(1)如圖1,AC與⊙O相交于點(diǎn)D,過點(diǎn)D作⊙O的切線,交PC于點(diǎn)E,若DE∥AB,求證:PA=PB;
(2)如圖2,已知⊙O的半徑為2,AB=2.
①當(dāng)點(diǎn)P在優(yōu)弧AB上運(yùn)動(dòng)時(shí),∠C的度數(shù)為 °;
②當(dāng)點(diǎn)P在優(yōu)弧AB上運(yùn)動(dòng)時(shí),△ABP的面積隨之變化,求△ABP面積的最大值;
③當(dāng)點(diǎn)P在優(yōu)弧AB上運(yùn)動(dòng)時(shí),△ABC的面積隨之變化,△ABC的面積的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個(gè)班的160厘米以上的女生中抽出一個(gè)作為旗手,在哪個(gè)班成功的機(jī)會大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段,為的中點(diǎn), 為上一點(diǎn),連接交于點(diǎn).
(1)如圖,當(dāng)OA=OB且為中點(diǎn)時(shí),求的值;
(2)如圖,當(dāng)OA=OB,=時(shí),求tan∠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且AB=AE,延長AB與DE的延長線交于點(diǎn)F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形的判定
(1)有一個(gè)角是________________的三角形是直角三角形.
(2)有兩個(gè)角________________的三角形是直角三角形.
(3)勾股定理的逆定理:如果三角形兩邊的平方和等于________________,那么這個(gè)三角形是直角三角形.
(4)如果三角形一邊上的________________等于這邊的一半,那么這個(gè)三角形是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC上的一點(diǎn),連結(jié)AE,作BF⊥AE,垂足為H,交CD于F,作CG∥AE,交BF于G.
求證:(1) CG=BH;(2)FC2=BF·GF;(3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進(jìn)度,想在小山的另一側(cè)同時(shí)施工.為了使山的另一側(cè)的開挖點(diǎn)C在AB的延長線上,設(shè)想過C點(diǎn)作直線AB的垂線L,過點(diǎn)B作一直線(在山的旁邊經(jīng)過),與L相交于D點(diǎn),經(jīng)測量∠ABD=135°,BD=800米,求直線L上距離D點(diǎn)多遠(yuǎn)的C處開挖?(≈1.414,精確到1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列的解題過程,然后回答下列問題.
例:解絕對值方程:.
解:討論:①當(dāng)時(shí),原方程可化為,它的解是;
②當(dāng)時(shí),原方程可化為,它的解是.
原方程的解為或.
(1)依例題的解法,方程算的解是_______;
(2)嘗試解絕對值方程:;
(3)在理解絕對值方程解法的基礎(chǔ)上,解方程:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com