【題目】某商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多8元,且購(gòu)進(jìn)的甲、乙兩種商品件數(shù)相同.
求甲、乙兩種商品的每件進(jìn)價(jià);
該商場(chǎng)將購(gòu)進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為60元,乙種商品的銷售單價(jià)為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場(chǎng)決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的七折銷售;乙種商品銷售單價(jià)保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價(jià)至少銷售多少件?
【答案】 甲種商品的每件進(jìn)價(jià)為40元,乙種商品的每件進(jìn)價(jià)為48元;甲種商品按原銷售單價(jià)至少銷售20件.
【解析】設(shè)甲種商品的每件進(jìn)價(jià)為x元,乙種商品的每件進(jìn)價(jià)為(x+8))元根據(jù)“某商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元購(gòu)進(jìn)的甲、乙兩種商品件數(shù)相同”列出方程進(jìn)行求解即可;
設(shè)甲種商品按原銷售單價(jià)銷售a件,則由“兩種商品全部售完后共獲利不少于2460元”列出不等式進(jìn)行求解即可.
設(shè)甲種商品的每件進(jìn)價(jià)為x元,則乙種商品的每件進(jìn)價(jià)為元,
根據(jù)題意得,,
解得,
經(jīng)檢驗(yàn),是原方程的解,
答:甲種商品的每件進(jìn)價(jià)為40元,乙種商品的每件進(jìn)價(jià)為48元;
甲乙兩種商品的銷售量為,
設(shè)甲種商品按原銷售單價(jià)銷售a件,則
,
解得,
答:甲種商品按原銷售單價(jià)至少銷售20件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知A、B兩個(gè)邊長(zhǎng)不相等的正方形紙片并排放置,若m7,n3,試求A、B兩個(gè)正方形紙片的面積之和.
(2)如圖1,用m、n表示A、B兩個(gè)正方形紙片的面積之和為 .(請(qǐng)直接寫出答案)
(3)如圖2,若A、B兩個(gè)正方形紙片的面積之和為5,且圖2中陰影部分的面積為2,試求m、n的值.
(4)現(xiàn)將正方形紙片A、B并排放置后構(gòu)造新的正方形得圖3,將正方形紙片B放在正方形紙片A的內(nèi)部得圖4,若圖3和圖4中陰影部分的面積分別為12和1,則A、B兩個(gè)正方形紙片的面積之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是邊BC的中點(diǎn),點(diǎn)E在△ABC內(nèi),AE平分∠BAC,CE⊥AE,點(diǎn)F在邊AB上,EF∥BC.
(1)求證:四邊形BDEF是平行四邊形;
(2)線段BF、AB、AC的數(shù)量之間具有怎樣的關(guān)系?證明你所得到的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線交⊙O于點(diǎn)D,過點(diǎn)D作⊙O的切線PD交CA的延長(zhǎng)線于點(diǎn)P,過點(diǎn)A作AE⊥CD于點(diǎn)E,過點(diǎn)B作BF⊥CD于點(diǎn)F.
(1)求證:DP∥AB;
(2)若AC=6,BC=8,求線段PD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠AOB和兩點(diǎn)C、D,求作一點(diǎn)P,使PC=PD,且點(diǎn)P到∠AOB的兩邊的距離相等.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法,不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,,求的度數(shù). (提示:作).
(2)如圖2,,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),,求與、之間的數(shù)量關(guān)系,并說明理由.
(3)在(2)的條件下,如果點(diǎn)在射線上運(yùn)動(dòng),請(qǐng)你直接寫出與、之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=8,點(diǎn)P在邊CD上,tan∠PBC=,點(diǎn)Q是在射線BP上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作AB的平行線交射線AD于點(diǎn)M,點(diǎn)R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當(dāng)點(diǎn)R與點(diǎn)D重合時(shí),求PQ的長(zhǎng);
(2)如圖2,試探索: 的比值是否隨點(diǎn)Q的運(yùn)動(dòng)而發(fā)生變化?若有變化,請(qǐng)說明你的理由;若沒有變化,請(qǐng)求出它的比值;
(3)如圖3,若點(diǎn)Q在線段BP上,設(shè)PQ=x,RM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD的邊BC的中點(diǎn),連接DE交AC于點(diǎn)F.
如圖,求證:;
如圖,作于G,試探究:當(dāng)AB與AD滿足什么關(guān)系時(shí),使得成立?并證明你的結(jié)論;
如圖,以DE為斜邊在矩形ABCD內(nèi)部作等腰,交對(duì)角線BD于N,連接AM,若,請(qǐng)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)動(dòng)車出發(fā)前油箱內(nèi)有42升油,行駛?cè)舾尚r(shí)后,途中在加油站加油若干升,油箱中余油量Q(升)與行駛時(shí)間t(時(shí))之間的函數(shù)關(guān)系如圖,回答下列問題(1)機(jī)動(dòng)車行駛________小時(shí)后加油,中途加油_______升;(2)求加油前油箱剩余油量Q與行駛時(shí)間t的函數(shù)關(guān)系,并直接寫出自變量t的取值范圍;(3)如果加油站距目的地還有230千米,車速為40千米/時(shí),要到達(dá)目的地,油箱中的油是否夠用?請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com