精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正方形ABCD的對角線長為.點E、F分別在正方形ABCD的邊ABCD,四邊形EFMG的邊MG分別與正方形ABCD的邊ABBC交于點H、KMF與正方形ABCD的邊BC交于點N.若四邊形EFDA沿直線EF折疊后能與四邊形EFMG重合,則圖中四個三角形△EGH、△HBK、△KMN、△NCF的周長的和為_____

【答案】8

【解析】

由題意可求ABBCCDAD=2,由折疊的性質可得GMAD,AEGE,DFFM,即可證EGH、HBKKMN、NCF的周長的和=AB+BC+CD+AD=8.

∵四邊形ABCD是正方形

ABADCDBC,

∵正方形ABCD的對角線長為2 ,

BC2+CD2=8,

BCCD=2=ADAB,

∵折疊,

GMAD,AEGEDFFM,

∵△EGHHBK、KMNNCF的周長的和=GE+EH+GH+BH+HK+BK+KN+KM+MN+NC+FC+FN

∴△EGH、HBKKMN、NCF的周長的和=AB+BC+CD+AD=8

故答案是:8

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,AC為對角線,E是邊AD上一點,BE⊥AC交AC于點F,BE、CD的延長線交于點G,且∠ABE=∠CAD.

(1)求證:四邊形ABCD是矩形;

(2)如果AE=EG,求證:AC2=BCBG.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】矩形ABCD,AB=6,BC=8.P在矩形ABCD的內部,點E在邊BC,滿足PBE∽△DBC,APD是等腰三角形,PE的長為數___________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點Ax軸的正半軸上,點Cy軸的正半軸上,OA=5,OC=4.

(1)如圖①,在AB上取一點D,將紙片沿OD翻折,使點A落在BC邊上的點E處,求D、E兩點的坐標;

(2)如圖②,若OE上有一動點P(不與O,E重合),從點O出發(fā),以每秒1個單位的速度沿OE方向向點E勻速運動,設運動時間為t秒(0<t<5),過點PPMOEOD于點M,連接ME,求當t為何值時,以點P、M、E為頂點的三角形與△ODA相似?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞頂點C順時針旋轉,旋轉角為θ(0°<θ<180°),得到△A'B'C

(1)如圖1,當ABCB'時,設A'B'與CB相交于點D,求證:△A'CD是等邊三角形.

(2)若EAC的中點,PA'B'的中點,則EP的最大值是多少,這時旋轉角θ為多少度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形ABCD和正方形AEFG的邊長分別為2,B在邊AGD在線段EA的延長線上,連接BE

(1)如圖1,求證DGBE;

(2)如圖2,將正方形ABCD繞點A按逆時針方向旋轉,當點B恰好落在線段DG上時求線段BE的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,直線y=x軸交于點A,與雙曲線在第一象限內交于點B,BCx軸于點C,OC=3AO

(1)求雙曲線的解析式;

(2)直接寫出不等式的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明為了檢測自己實心球的訓練情況,再一次投擲的測試中,實心球經過的拋物線如圖所示,其中出手點A的坐標為(0,),球在最高點B的坐標為(3,).

(1)求拋物線的解析式;

(2)已知某市男子實心球的得分標準如表:

得分

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

擲遠(米)

8.6

8.3

8

7.7

7.3

6.9

6.5

6.1

5.8

5.5

5.2

4.8

4.4

4.0

3.5

3.0

假設小明是春谷中學九年級的男生,求小明在實心球訓練中的得分;

(3)在小明練習實心球的正前方距離投擲點7米處有一個身高1.2米的小朋友在玩耍,問該小朋友是否有危險(如果實心球在小孩頭頂上方飛出為安全,否則視為危險),請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,PA,PB分別與O相切于A,B兩點,ACB=60°.

(1)求P的度數;

(2)若O的半徑長為4cm,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案