【題目】某單位計劃從商店購買同一種品牌的鋼筆和筆記本,已知購買一支鋼筆比購買一個筆記本多用20元,若用1500元購買鋼筆和用600元購買筆記本,則購買鋼筆的數(shù)量是購買筆記本數(shù)量的一半.
(1)求購買一支鋼筆、一個筆記本各需要多少元?
(2)經商談,商店給予優(yōu)惠,優(yōu)惠方式是每購買一支鋼筆贈送一個筆記本;如果此單位需要筆記本的數(shù)量是鋼筆數(shù)量的3倍還少6個,且購買鋼筆和筆記本的總費用不超過1020元,那么最多可購買多少支鋼筆?
【答案】(1)25,5;(2)30.
【解析】
(1)設購買一個筆記本需要x元,則購買一支鋼筆需要(x+20)元,根據(jù)數(shù)量=總價÷單價結合用1500元購買鋼筆的數(shù)量是用600元購買筆記本數(shù)量的一半,即可得出關于x的分式方程,解之經檢驗后即可得出結論;
(2)設購買m支鋼筆,則購買(3m-6)個筆記本,根據(jù)總價=單價×數(shù)量結合總費用不超過1020元,即可得出關于m的一元一次不等式,解之取其中的最大值即可得出結論.
解:(1)設購買一個筆記本需要x元,則購買一支鋼筆需要(x+20)元,
依題意,得:2×,
解得:x=5,
經檢驗,x=5是原分式方程的解,且符合題意,
∴x+20=25.
答:購買一支鋼筆需要25元,購買一個筆記本需要5元.
(2)設購買m支鋼筆,則購買(3m﹣6)個筆記本,
依題意,得:25m+5(3m﹣6﹣m)≤1020,
解得:m≤30.
答:最多可購買30支鋼筆.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一塊直角三角板ABC中,∠C=90°,∠A=30°,BC=1,將另一個含30°角的△EDF的30°角的頂點D放在AB邊上,E、F分別在AC、BC上,當點D在AB邊上移動時,DE始終與AB垂直,若△CEF與△DEF相似,則AD= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A1(1,1),將點A1向上平移1個單位長度,再向右平移2個單位長度得到點A2;將點A2向上平移2個單位長度,再向右平移4個單位長度得到點A3;將點A3向上平移4個單位長度,再向右平移8個單位長度得到點A4,…按這個規(guī)律平移下去得到點An(n為正整數(shù)),則點An的坐標是( 。
A.(2n,2n﹣1)B.(2n﹣1,2n)
C.(2n﹣1,2n+1)D.(2n﹣1,2n﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為挑選優(yōu)秀同學參加云南省級英語聽說能力競賽,某中學舉行了“英語單詞聽寫”競賽,每位學生聽寫單詞99個,比賽結束后隨機抽查部分學生的聽寫結果,以下是根據(jù)抽查結果繪制的統(tǒng)計圖的一部分.
根據(jù)以上信息解決下列問題:
(1)本次共隨機抽查了 名學生,并補全頻數(shù)分布直方圖;
(2)若把每組聽寫正確的個數(shù)用這組數(shù)據(jù)的組中值代替,則被抽查學生聽寫正確的個數(shù)的平均數(shù)是多少?
(3)該校共有3000名學生,如果聽寫正確的個數(shù)少于60個定為不合格,請你估計這所學校本次競賽聽寫不合格的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D在AB上,以AD為直徑的⊙O與邊BC相切于點E,與邊AC相交于點G,且=,連接GO并延長交⊙O于點F,連接BF
(1)求證:①AO=AG,②BF是⊙O的切線.
(2)若BD=6,求圖形中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為促進消費,杭州市政府開展發(fā)放政府補貼消費的“消費券”活動,一超市的月銷售額逐步增加.據(jù)統(tǒng)計,2月份銷售額為200萬元,4月份銷售額為500萬元.若3,4月平均每月的增長率為x,則( )
A.200(1+x)=500B.200(1+x)+200+(1+x)2=500
C.200(1+x)2=500D.200+200(1+x)+200(1+x)2=500
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設一次函數(shù)y1=x+a+b和二次函數(shù)y2=x(x+a)+b.
(1)若y1,y2的圖象都經過點(-2,1),求這兩個函數(shù)的表達式;
(2)求證:y1,y2的圖象必有交點;
(3)若a>0,y1,y2的圖象交于點(x1,m),(x2,n)(x1<x2),設(x3,n)為y2圖象上一點(x3≠x2),求x3-x1的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,G、A、B在同一直線上,點E在AD上,連接DG,BE.
(1)證明:BE=DG;
(2)發(fā)現(xiàn):當正方形AEFG繞點A旋轉,如圖②所示,判斷BE與DG的數(shù)量關系和位置關系,并說明理由;
(3)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時,判斷BE與DG的數(shù)量關系和位置關系是否與(2)的結論相同,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC內接于⊙O,AB是直徑,點D在⊙O上,OD∥BC,過點D作DE⊥AB,垂足為E,連接CD交OE邊于點F.
(1)求證:△DOE∽△ABC;
(2)求證:∠ODF=∠BDE;
(3)連接OC.設△DOE的面積為S.sinA=,求四邊形BCOD的面積(用含有S的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com