【題目】如圖,以AB邊為直徑的O經(jīng)過點(diǎn)P,C是O上一點(diǎn),連結(jié)PC交AB于點(diǎn)E,且ACP=60°,PA=PD.

(1)試判斷PD與O的位置關(guān)系,并說明理由;

(2)若點(diǎn)C是弧AB的中點(diǎn),已知AB=4,求CECP的值.

【答案】(1)PD是O的切線;(2)8

【解析】

試題分析:(1)連結(jié)OP,根據(jù)圓周角定理可得AOP=2ACP=120°,然后計(jì)算出PAD和D的度數(shù),進(jìn)而可得OPD=90°,從而證明PD是O的切線;

(2)連結(jié)BC,首先求出CAB=ABC=APC=45°,然后可得AC長(zhǎng),再證明CAE∽△CPA,進(jìn)而可得,然后可得CECP的值.

試題解析:(1)如圖,PD是O的切線.

證明如下:

連結(jié)OP,∵∠ACP=60°,∴∠AOP=120°,OA=OP,∴∠OAP=OPA=30°,PA=PD,∴∠PAO=D=30°,∴∠OPD=90°,PD是O的切線.

(2)連結(jié)BC,AB是O的直徑,∴∠ACB=90°,又C為弧AB的中點(diǎn),∴∠CAB=ABC=APC=45°,AB=4,AC=Absin45°=∵∠C=C,CAB=APC,∴△CAE∽△CPA,,CPCE=CA2=(2=8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】夏季來臨,商場(chǎng)準(zhǔn)備購(gòu)進(jìn)甲、乙兩種空調(diào)已知甲種空調(diào)每臺(tái)進(jìn)價(jià)比乙種空調(diào)多500元,用40000元購(gòu)進(jìn)甲種空調(diào)的數(shù)量與用30000元購(gòu)進(jìn)乙種空調(diào)的數(shù)量相同請(qǐng)解答下列問題:

求甲、乙兩種空調(diào)每臺(tái)的進(jìn)價(jià);

若甲種空調(diào)每臺(tái)售價(jià)2500元,乙種空調(diào)每臺(tái)售價(jià)1800元,商場(chǎng)欲同時(shí)購(gòu)進(jìn)兩種空調(diào)20臺(tái),且全部售出,請(qǐng)寫出所獲利潤(rùn)與甲種空調(diào)臺(tái)之間的函數(shù)關(guān)系式;

的條件下,若商場(chǎng)計(jì)劃用不超過36000元購(gòu)進(jìn)空調(diào),且甲種空調(diào)至少購(gòu)進(jìn)10臺(tái),并將所獲得的最大利潤(rùn)全部用于為某敬老院購(gòu)買1100臺(tái)的A型按摩器和700臺(tái)的B型按摩器直接寫出購(gòu)買按摩器的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿DE折疊,使點(diǎn)A落在BC邊上的點(diǎn)F處,且DE∥BC,下列結(jié)論中,一定正確的個(gè)數(shù)是( )

①△BDF是等腰三角形;

②DE=BC;

四邊形ADFE是菱形;

④∠BDF+∠FEC=2∠A.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,∠B=60°.GCD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F,連結(jié)CE,DF,下列說法不正確的是( )

A. 四邊形CEDF是平行四邊形

B. 當(dāng)時(shí),四邊形CEDF是矩形

C. 當(dāng)時(shí),四邊形CEDF是菱形

D. 當(dāng)時(shí),四邊形CEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,點(diǎn)、是對(duì)角線上兩點(diǎn),.

(1)求證:四邊形是平行四邊形.

(2).,,的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備為七年級(jí)學(xué)生開設(shè)6門選修課,選取了若干學(xué)生進(jìn)行了我最喜歡的一門選修課調(diào)查,將調(diào)查結(jié)果繪制成了如圖所示的統(tǒng)計(jì)圖表(不完整).

選修課

人數(shù)

40

60

100

下列說法不正確的是(

A.這次被調(diào)查的學(xué)生人數(shù)為400B.對(duì)應(yīng)扇形的圓心角為

C.喜歡選修課的人數(shù)為72D.喜歡選修課的人數(shù)最少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù) y=2x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方,所得的折線是函數(shù)y=(b為常數(shù))的圖象,若該圖象在直線y=1下方的點(diǎn)的橫坐標(biāo)x滿足0x3,則 b的取值范圍為(

A.5b≤-1B.3b≤-1C.2b0D.3b0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是

A. “明天降雨的概率是80%”表示明天有80%的時(shí)間都在降雨

B. “拋一枚硬幣正面朝上的概率為表示每拋2次就有一次正面朝上

C. “彩票中獎(jiǎng)的概率為1%”表示買100張彩票肯定會(huì)中獎(jiǎng)

D. “拋一枚正方體骰子,朝上的點(diǎn)數(shù)為2的概率為表示隨著拋擲次數(shù)的增加,拋出朝上的點(diǎn)數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1=2CFAB,DEAB,求證:FGBC.

證明:CFAB,DEAB 已知

∴∠BED=90°,BFC=90°

∴∠BED=BFC ( )

EDFC

∴∠1=BCF ( )

∵∠2=1 已知

∴∠2=BCF ( )

FGBC ( )

查看答案和解析>>

同步練習(xí)冊(cè)答案