【題目】已知二次函數(shù)y=x2-(2m-1)x+m2-m(m是常數(shù))

(1)m=2時,求二次函數(shù)圖象與x軸的交點;

(2)A(n-3,n2+2),B(-n+1,n2+2)是該二次函數(shù)圖象上的兩個不同點,求m的值和二次函數(shù)解析式.

【答案】(1)交點是(1,0)和(2,0);(2)m=,二次函數(shù)解析式為:y=x2+2x+.

【解析】

1)將m=2代入函數(shù)解析式,然后令y=0,解一元二次方程即可得到圖像與x軸的交點坐標;

2)由A、B縱坐標相同,可知A、B關(guān)于對稱軸對稱,可求出對稱軸,利用對稱軸公式可求出m,從而得到二次函數(shù)解析式.

1)當m=2時,y=x2-3x+2,

y=0,得x2-3x+2=0,

解得:x1=1,x2=2

交點是(1,0)和(2,0

2∵A(n-3,n2+2)、B(-n+1,n2+2)是該二次函數(shù)圖象上的兩個不同點,

拋物線的對稱軸是:,

=,,

代入y=x2-(2m-1)x+m2-m,得,

二次函數(shù)解析式為:y=x2+2x+.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y2x1的圖象分別交x、y軸于點AB,將直線AB繞點B按順時針方向旋轉(zhuǎn)45°,交x軸于點C,則直線BC的函數(shù)表達式是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形BCOG中,OC3,點A為邊OG上一點,OA,AB,∠CBA30°.動點D以每秒1個單位的速度從點C出發(fā)沿CO向終點O運動,同時動點E以每秒2個單位的速度從點A出發(fā)沿AB向終點B運動,過點DDFAB,交BC于點F,連接AD、DE、EF,設(shè)運動時間為1秒.

1)求DF的長(用含t的代數(shù)式表示)

2)求證:四邊形ADFE為平行四邊形;

3)探索當t為何值時,BEF與以D,E,F為頂點的三角形相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣30)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b24ac0;②a+b+c0;③ca=2;④方程ax2+bx+c2=0有兩個相等的實數(shù)根.其中正確結(jié)論的個數(shù)為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,BC=6AC=2,∠A-B=90°,則⊙O的面積為( )

A.9.6πB.10πC.10.8πD.12π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+ca≠0)過以下三個點:(m,n),(m+2,2n),和(m+6,n),當拋物線上另有點的橫坐標為m+4時,它的縱坐標為_____;當橫坐標為m﹣2時,它的縱坐標為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yx2(1m)xmx軸于A,B兩點(A在點B的左邊),交y軸負半軸于點C.

(1)如圖1,m3

①直接寫出A,BC三點的坐標;

②若拋物線上有一點D,∠ACD45°,求點D的坐標;

(2)如圖2,過點E(m,2)作一直線交拋物線于點PQ兩點,連接AP,AQ,分別交y軸于M,N兩點,求證:OMON是一個定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線yk0)與直線yx交于A\B兩點(點A在第三象限),將雙曲線在第一象限的一支沿射線BA的方向平移,使其經(jīng)過點A,將雙曲線在第三象限的一支沿射線AB的方向平移,使其經(jīng)過點B,平移后的兩條曲線相交于P、Q兩點,此時我們稱平移后的兩條曲線所圍部分(如圖中陰影部分)為雙曲線的,PQ為雙曲線的眸徑,當雙曲線yk0)的眸徑為6時,k的值為( 。

A.B.2C.D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠DAB90°,點EBC的延長線上,且∠CED=∠CAB

1)求證:DE⊙O的切線.

2)若ACDE,當AB8,DC4時,求AC的長.

查看答案和解析>>

同步練習(xí)冊答案