【題目】如圖,拋物線經(jīng)過,兩點(diǎn),與y軸交于點(diǎn)C,連接AB,AC,BC.
求拋物線的表達(dá)式;
求證:AB平分;
拋物線的對稱軸上是否存在點(diǎn)M,使得是以AB為直角邊的直角三角形,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
【答案】拋物線的解析式為;證明見解析;點(diǎn)M的坐標(biāo)為或.
【解析】
將,代入拋物線的解析式得到關(guān)于a、b的方程組,從而可求得a、b的值;
先求得AC的長,然后取,則,連接BD,接下來,證明,然后依據(jù)SSS可證明≌,接下來,依據(jù)全等三角形的性質(zhì)可得到;
作拋物線的對稱軸交x軸與點(diǎn)E,交BC與點(diǎn)F,作點(diǎn)A作,作,分別交拋物線的對稱軸與、M,依據(jù)點(diǎn)A和點(diǎn)B的坐標(biāo)可得到,從而可得到或,從而可得到FM和的長,故此可得到點(diǎn)和點(diǎn)M的坐標(biāo).
將,代入得:,
解得:,,
拋物線的解析式為;
,,
,
取,則,
由兩點(diǎn)間的距離公式可知,
,,
,
,
在和中,,,,
≌,
,
平分;
如圖所示:拋物線的對稱軸交x軸與點(diǎn)E,交BC與點(diǎn)F.
拋物線的對稱軸為,則.
,,
,
,
,
,
,
同理:,
又,
,
,
點(diǎn)M的坐標(biāo)為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年9月,我國中小學(xué)生迎來了新版“教育部統(tǒng)編義務(wù)教育語文教科書”,本次“統(tǒng)編本”教材最引人關(guān)注的變化之一是強(qiáng)調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展“最受歡迎的傳統(tǒng)文化經(jīng)典著作”調(diào)查,隨機(jī)調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計(jì)圖:
(1)本次一共調(diào)查了 名學(xué)生;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)某班語文老師想從這四大名著中隨機(jī)選取兩部作為學(xué)生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=12,點(diǎn)E為BC的中點(diǎn),以CD為直徑作半圓CFD,點(diǎn)F為半圓的中點(diǎn),連接AF,EF,圖中陰影部分的面積是( )
A. 18+36π B. 24+18π C. 18+18π D. 12+18π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)的圖象與直線y=2x+1交于點(diǎn)A(1,m).
(1)求k、m的值;
(2)已知點(diǎn)P(n,0)(n≥1),過點(diǎn)P作平行于y軸的直線,交直線y=2x+1于點(diǎn)B,交函數(shù)的圖象于點(diǎn)C.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
①當(dāng)n=3時,求線段AB上的整點(diǎn)個數(shù);
②若的圖象在點(diǎn)A、C之間的部分與線段AB、BC所圍成的區(qū)域內(nèi)(包括邊界)恰有5個整點(diǎn),直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=4,扇形BEF的半徑為4,圓心角為60°,則圖中陰影部分的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點(diǎn)O在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過點(diǎn)D作BC的平行線與AC的延長線相交于點(diǎn)P.
(1)求證:PD是⊙O的切線;
(2)求證:△ABD∽△DCP;
(3)當(dāng)AB=5cm,AC=12cm時,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑做⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長線于點(diǎn)F.
(1)求證:FE⊥AB;
(2)填空:當(dāng)EF=4,時,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MAN=60°,若△ABC的頂點(diǎn)B在射線AM上,且AB=2,點(diǎn)C在射線AN上運(yùn)動,當(dāng)△ABC是銳角三角形時,BC的取值范圍是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com