【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖8,則下列4個結論:①b2﹣4ac<0; 2a﹣b=0;a+b+c<0;④點M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2,則y1≤y2,其中正確的是__

【答案】②③

【解析】

根據(jù)函數(shù)與中軸的交點的個數(shù),以及對稱軸的解析式,函數(shù)的增減性進行判斷.

∵拋物線與x軸有2個交點,

所以①錯誤;

∵拋物線的對稱軸為直線

,所以②正確;

∵拋物線對稱軸為直線拋物線與x軸的一個交點A在點之間,

∴拋物線與x軸的一個交點點之間,

x=1時,

所以③正確;

∵拋物線開口向下,

∴當時,則;當時,則所以④錯誤.

故答案為:②③

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是ABAC的垂直平分線,點E、NBC上,則∠EAN=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DCBC的中點.

(1)觀察猜想

1中,線段PMPN的數(shù)量關系是 ,位置關系是

(2)探究證明

ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點,∠ADE=∠C.

(1)求證:△BDE∽△CAD;

(2)若CD=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點P的坐標為(2a+6,a-3

1)當點P的縱坐標為-4,求a的值;

2)若點Py軸上,求點P的坐標;

3)若點P在第四象限,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC=12cm,BC=9cm,點DAB的中點.

1)如果點P在線段BC上以3厘米/秒的速度由BC點運動,同時點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,當經(jīng)過1秒時,BPDCQP是否全等,請判斷并說明理由;

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使BPD≌△CPQ

2)若點Q以②的運動速度從點C出發(fā),點P以原來運動速度從點B同時出發(fā),都逆時針沿ABC的三邊運動,求經(jīng)過多長時間,點P與點Q第一次在ABC的哪條邊上會相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A按逆時針方向旋轉(zhuǎn),得到矩形AEFG,E點正好落在邊CD上,連接BE,BG,且BGAEP.

1)求證:CBE=BAE

(2)求證:PG=PB;

3)若AB=BC=3,求出BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點為二次函數(shù)圖象的頂點,直線分別交軸正半軸,軸于點,.

(1)判斷頂點是否在直線上,并說明理由.

(2)如圖1,若二次函數(shù)圖象也經(jīng)過點,,且,根據(jù)圖象,寫出的取值范圍.

(3)如圖2,點坐標為,點內(nèi),若點,都在二次函數(shù)圖象上,試比較的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線l過正方形ABCD的頂點B,點A、C到直線l的距離分別是AE=1,CF=2,則EF長為

查看答案和解析>>

同步練習冊答案