【題目】如圖,在△ABC中,∠BAC=90°,AB=5cm,BC=13cm,點D在線段AC上,且CD=7cm,動點P從距B點15cm的E點出發(fā),以每秒2cm的速度沿射線EA的方向運動,時間為t秒.
(1)求AD的長.
(2)用含有t的代數(shù)式表示AP的長.
(3)在運動過程中,是否存在某個時刻,使△ABC與△ADP全等?若存在,請求出t值;若不存在,請說明理由.
(4)直接寫出t=______秒時,△PBC為等腰三角形.
【答案】(1)5cm;(2)PA=;(3)t的值為4或16;(4)1或14或12.5或.
【解析】
(1)利用勾股定理求出AC的長即可解決問題;
(2)根據(jù)線段的和差關系可求出AE的長,根據(jù)距離=速度×時間可求出PE的長,根據(jù)絕對值的定義即可表示出AP的長;
(3)當AC=PA時,△ABC與△ADP全等,列方程即可求出t的值;
(4)分三種情形:BC=BP,BC=CP,PC=PB分別求解即可.
(1)在Rt△ABC中,∵∠BAC=90°,AB=5cm,BC=13cm,
∴AC===12(cm),
∵CD=7cm,
∴AD=AC﹣CD=12﹣7=5(cm).
(2)∵AB=5,BE=15,
∴AE=BE+AB=20,
∵點P以每秒2cm的速度沿射線EA的方向運動,
∴PE=2t,
∴AP==,
(3)∵AD=BD=5cm,∠BAC=∠PAD=90°,
∴當AC=PA時,△ABC與△ADP全等,
∴=12,
解得:t=4或t=16,
∴滿足條件的t的值為4或16.
(4)當BC=BP時,=13,
解得t=1或t=14,
當CP=CB時,PA=AB=5,
∴=5,
t=12.5或t=7.5,
∵t=7.5時,點P與點B重合,不符合題意,
∴t=12.5.
當PC=PB時,122+(20-2t)2=(2t﹣15)2,
解得:t=,
故答案為:1或14或12.5或
科目:初中數(shù)學 來源: 題型:
【題目】為維護南海主權,我海軍艦艇加強對南海海域的巡航,年月日上午時,我海巡號艦艇在觀察點處觀測到其正東方向海里處有一燈塔,該艦艇沿南偏東的方向航行,時到達觀察點,測得燈塔位于其北偏西方向,求該艦艇的巡航速度?(結果保留整數(shù))
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB、AC邊上的高CE、BD相交于點P,圖中與△BPE相似的三角形共有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件
B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定
C.“明天降雨的概率為”,表示明天有半天都在降雨
D.了解一批電視機的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】教材呈現(xiàn):如圖是華師版八年級上冊數(shù)學教材第96頁的部分內容.
請根據(jù)教材中的分析,結合圖①,寫出“角平分線的性質定理”完整的證明過程.
定理應用:
如圖②,在四邊形ABCD中,∠B=∠C,點E在邊BC上,AE平分∠BAD,DE平分∠ADC.
(1)求證:BE=CE.
(2)若四邊形ABCD的周長為24,BE=2,面積為30,則△ABE的邊AB的高的長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=﹣1,點B的坐標為(1,0),則下列結論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結論有( 。﹤.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=x2﹣2x﹣3與x軸交于A、B兩點,與y軸交于點C,該拋物線的頂點為M.
(1)求點A、B、C的坐標.
(2)求直線BM的函數(shù)解析式.
(3)試說明:∠CBM+∠CMB=90°.
(4)在拋物線上是否存在點P,使直線CP把△BCM分成面積相等的兩部分?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4與x軸、y軸分別交于點A和點B,在線段AB上有一動點P(不與點A、B重合),連接OP,當點P的坐標為_____時線段OP最短.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx經(jīng)過點A(﹣1,)及原點,交x軸于另一點C(2,0),點D(0,m)是y軸正半軸上一動點,直線AD交拋物線于另一點B.
(1)求拋物線的解析式;
(2)如圖1,連接AO、BO,若△OAB的面積為5,求m的值;
(3)如圖2,作BE⊥x軸于E,連接AC、DE,當D點運動變化時,AC、DE的位置關系是否變化?請證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com