函數(shù)y1=-ax2+ax+1,y2=ax2+ax-1(其中a為常數(shù),且a>0)的圖象如圖所示,請寫出一條與上述兩條拋物線有關(guān)的不同類型的結(jié)論:________.

y1=ax2+ax+1開口向下,y2=ax2+ax-1開口向上
分析:根據(jù)a>0,-a<0,即可得到:y1=ax2+ax+1開口向下,y2=ax2+ax-1開口向上的結(jié)論.
解答:∵函數(shù)y1=-ax2+ax+1,y2=ax2+ax-1(其中a為常數(shù),且a>0),
∴a>0,-a<0,
∴一條與上述兩條拋物線有關(guān)的不同類型的結(jié)論是y1=ax2+ax+1開口向下,y2=ax2+ax-1開口向上,
故答案為:y1=ax2+ax+1開口向下,y2=ax2+ax-1開口向上.
點評:本題主要考查對二次函數(shù)的圖象,二次函數(shù)的性質(zhì)等知識點的理解和掌握,理解二次函數(shù)的圖象和二次函數(shù)的性質(zhì)之間的關(guān)系式解此題的關(guān)鍵,此題是一個開放型的題目,題型較好.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

16、如圖是二次函數(shù)y1=ax2+bx+c(a≠0)和一次函數(shù)y2=mx+n(m≠0)的圖象,當y2>y1,x的取值范圍是
-2<x<1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y1=ax2+bx+3的圖象與x軸相交于點A(-3,0)、B(1,0),交y軸于點C,C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)y2=mx+n的圖象經(jīng)過B、D兩點.
(1)求二次函數(shù)的解析式及點D的坐標;
(2)根據(jù)圖象寫出y2>y1時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•上城區(qū)二模)如圖,二次函數(shù)y1=ax2+bx+c和一次函數(shù)y2=mx+n的圖象,觀察圖象,寫出y2≤y1時x的取值范圍
x≥1或x≤-2
x≥1或x≤-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧波模擬)在平面直角坐標系xOy中,已知二次函數(shù)y1=ax2+3x+c的圖象經(jīng)過原點及點A(1,2),與x軸相交于另一點B.
(1)求:二次函數(shù)y1的解析式及B點坐標;
(2)若將拋物線y1以x=3為對稱軸向右翻折后,得到一個新的二次函數(shù)y2,已知二次函數(shù)y2與x軸交于兩點,其中右邊的交點為C點.點P在線段OC上,從O點出發(fā)向C點運動,過P點作x軸的垂線,交直線AO于D點,以PD為邊在PD的右側(cè)作正方形PDEF(當P點運動時,點D、點E、點F也隨之運動);
①當點E在二次函數(shù)y1的圖象上時,求OP的長.
②若點P從O點出發(fā)向C點做勻速運動,速度為每秒1個單位長度,同時線段OC上另一個點Q從C點出發(fā)向O點做勻速運動,速度為每秒2個單位長度(當Q點到達O點時停止運動,P點也同時停止運動).過Q點作x軸的垂線,與直線AC交于G點,以QG為邊在QG的左側(cè)作正方形QGMN(當Q點運動時,點G、點M、點N也隨之運動),若P點運動t秒時,兩個正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖是二次函數(shù)y1=ax2+bx+c和一次函數(shù)y2=kx+t的圖象,當y1≥y2時,x的取值范圍是
-1≤x≤2
-1≤x≤2

查看答案和解析>>

同步練習冊答案