【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利80元.為了擴(kuò)大銷售、盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價5元,商場平均每天就能多售出2件.請解答下列問題:
(1)當(dāng)每件襯衫降價30元時,求商場每天銷售該襯衫所獲得的總利潤.
(2)當(dāng)該襯衫每件降價多少元時,商場銷售該襯衫每天所獲得的利潤為1680元.
【答案】(1)當(dāng)每件襯衫降價30元時,商場每天銷售該襯衫所獲得的總利潤為1600元;(2)當(dāng)該襯衫每件降價20元時,商場銷售該襯衫每天所獲得的利潤為1680元
【解析】
(1)根據(jù)“總利潤=單件的利潤×件數(shù)”即可求出結(jié)論;
(2)設(shè)該襯衫每件降價x元,根據(jù)“總利潤=單件的利潤×件數(shù)”,列出一元二次方程即可求出結(jié)論.
解:(1)由題意可得總利潤=(80-30)×(20+×2)=1600(元)
答:當(dāng)每件襯衫降價30元時,商場每天銷售該襯衫所獲得的總利潤為1600元.
(2)設(shè)該襯衫每件降價x元
由題意可知(80-x)×(20+×2)=1680
解得:,
∵盡快減少庫存,
∴,
答:當(dāng)該襯衫每件降價20元時,商場銷售該襯衫每天所獲得的利潤為1680元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正比例函數(shù)y=kx與反比例函數(shù)的圖象交于點A(﹣3,2).
(1)試確定上述正比例函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,在第二象限內(nèi),當(dāng)x取何值時,反比例函數(shù)的值大于正比例函數(shù)的值?
(3)P(m,n)是反比例函數(shù)圖象上的一動點,其中﹣3<m<0,過點P作直線PB∥x軸,交y軸于點B,過點A作直線AD∥y軸,交x軸于點D,交直線PB于點C.當(dāng)四邊形OACP的面積為6時,請判斷線段BP與CP的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=kx+b交x軸于點A,交y軸于點B,直線y=2x﹣4交x軸于點D,與直線AB相交于點C(3,2).
(1)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>kx+b的解集;
(2)若點A的坐標(biāo)為(5,0),求直線AB的解析式;
(3)在(2)的條件下,求四邊形BODC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一項工程,在工程招標(biāo)時,接到甲、乙兩個工程隊的投標(biāo)書,施工一天,需付甲工程隊工程款1.5萬元,乙工程隊工程款1.1萬元,工程領(lǐng)導(dǎo)小組根據(jù)甲乙兩隊的投標(biāo)書測算,可有三種施工方案:
(1)甲隊單獨完成這項工程剛好如期完成;
(2)乙隊單獨完成這項工程要比規(guī)定日期多用5天;
(3)若甲、乙兩隊合作4天,余下的工程由乙隊單獨也正好如期完成.
據(jù)上述條件解決下列問題:
①規(guī)定期限是多少天?寫出解答過程;
②在不耽誤工期的情況下,你覺得那一種施工方案最節(jié)省工程款?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC,BD相交于O點,點P是線段AD上一動點(不與點D重合),PO的延長線交BC于Q點.
(1)求證:四邊形PBQD為平行四邊形.
(2)若AB=3cm,AD=4cm,P從點A出發(fā).以1cm/s的速度向點D勻速運動.設(shè)點P的運動時間為ts,問:四邊形PBQD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,.點O是的中點,過點O的直線與從重合的位置開始,繞點O作逆時針旋轉(zhuǎn),交于點D,過點C作交直線于點E,設(shè)直線的旋轉(zhuǎn)角為.
(1)當(dāng)四邊形是等腰梯形時,則=_______,此時________;
(2)當(dāng)四邊形是直角梯形時,則=_________,此時_________;
(3)當(dāng)為幾度時,判斷四邊形是否為菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,∠ABC=60°,E、F分別在CD和BC的延長線上,AE∥BD,EF⊥BC,EF=3,則AB的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E在邊BC上(點E不與點B重合),連接AE,過點B作BF⊥AE于點F,交CD于點G.
(1)求證:△ABF∽△BGC;
(2)若AB=2,G是CD的中點,求AF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com