【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=-4x+4的圖像與x軸,y軸分別交于A,B兩點,正方形ABCD的頂點C,D在第一象限,頂點D在反比例函數(shù) 的圖像上,若正方形ABCD向左平移n個單位后,頂點C恰好落在反比例函數(shù)的圖像上,則n的值是( )
A.2B.3C.4D.5
【答案】B
【解析】
由一次函數(shù)的關(guān)系式可以求出與x軸和y軸的交點坐標(biāo),即求出OA,OB的長,由正方形的性質(zhì),三角形全等可以求出DE、AE、CF、BF的長,進(jìn)而求出G點的坐標(biāo),最后求出CG的長就是n的值.
如圖過點D、C分別做DE⊥x軸,CF⊥y軸,垂足分別為E,F.
CF交反比例函數(shù)的圖像于點G.
把x=0和y=0分別代入y=-4x+4
得y=4和x=1
∴A(1,0),B(0,4)
∴OA=1,OB=4
由ABCD是正方形,易證
△AOB≌△DEA≌△BCF(AAS)
∴DE=BF=OA=1,AE=CF=OB=4
∴D(5,1),F(0,5)
把D點坐標(biāo)代入反比例函數(shù)y=,得k=5
把y=5代入y=,得x=1,即FG=1
CG=CF-FG=4-1=3,即n=3
故答案為B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過x軸上的點A(1,0)和點B及y軸上的點C,經(jīng)過B、C兩點的直線為.
①求拋物線的解析式.
②點P從A出發(fā),在線段AB上以每秒1個單位的速度向B運(yùn)動,同時點E從B出發(fā),在線段BC上以每秒2個單位的速度向C運(yùn)動.當(dāng)其中一個點到達(dá)終點時,另一點也停止運(yùn)動.設(shè)運(yùn)動時間為t秒,求t為何值時,△PBE的面積最大并求出最大值.
③過點A作于點M,過拋物線上一動點N(不與點B、C重合)作直線AM的平行線交直線BC于點Q.若點A、M、N、Q為頂點的四邊形是平行四邊形,求點N的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O上有一個動點A和一個定點B,令線段AB的中點是點P,過點B作⊙O的切線BQ,且BQ=3,現(xiàn)測得的長度是,的度數(shù)是120°,若線段PQ的最大值是m,最小值是n,則mn的值是( )
A. 3 B. 2 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,點E是BC的中點,過點B作BG⊥AE于點G,過點C作CF垂直BG的延長線于點H,交AD于點F
(1)求證:△ABG≌△BCH;
(2)如圖2,連接AH,連接EH并延長交CD于點I;
求證:① AB2=AE·BH;② 求的值;
查看答案和解析>>
科目:
來源: 題型:【題目】小亮將筆記本電腦水平放置在桌子上,顯示屏OA與底板OB所在水平線的夾角為120°時,感覺最舒適(如圖1),側(cè)面示意圖為圖2;使用時為了散熱,她在底板下面墊入散熱架BCO'后,電腦轉(zhuǎn)到B O′A′位置(如圖3),側(cè)面示意圖為圖4.已知OA=OB=28cm,O′C⊥OB于點C,O′C=14cm.
(參考數(shù)據(jù):,,)
(1)求∠CBO'的度數(shù).
(2)顯示屏的頂部A'比原來升高了多少cm?(結(jié)果精確到0.1cm)
(3)如圖4,墊入散熱架后,要使顯示屏O′A′與水平線的夾角仍保持120°,則顯示屏O′A′應(yīng)繞點O'按順時針方向旋轉(zhuǎn)多少度?(不寫過程,只寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,為對角線上任意一點(不與重合)連接,過點M作交(或的延長線)于點,連接.
感知:如圖①,當(dāng)M為中點時,容易證(不用證明);
探究:如圖②,點M為對角線上任意一點(不與重合)請?zhí)骄?/span>與的數(shù)量關(guān)系,并證明你的結(jié)論.
應(yīng)用:(1)直接寫出的面積S的取值范圍;
(2)若,則與的數(shù)量關(guān)系是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展了主題為“垃圾分類,綠色生活新時尚”的宣傳活動,為了解學(xué)生對垃圾分類知識的掌握情況,該校環(huán)保社團(tuán)成員在校園內(nèi)隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將他們的得分按優(yōu)秀、良好、合格、不合格四個等級進(jìn)行統(tǒng)計,并繪制了如下不完整的統(tǒng)計表和條形統(tǒng)計圖.
等級 | 頻數(shù) | 頻率 |
優(yōu)秀 | 20 | |
良好 | ||
合格 | 10 | |
不合格 | 5 |
請根據(jù)以上信息,解答下列問題:
(1)本次調(diào)查隨機(jī)抽取了______名學(xué)生;表中______,______;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)若全校有2000名學(xué)生,請你估計該校掌握垃圾分類知識達(dá)到“優(yōu)秀”和“良好”等級的學(xué)生共有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四個菱形①②③④的較小內(nèi)角均與已知平行四邊形ABCD的∠A相等,邊長各不相同.將這四個菱形如圖所示放入平行四邊形中,未被四個菱形覆蓋的部分用陰影表示.若已知兩個陰影部分的周長的差,則不需測量就能知道周長的菱形為( )
A.①B.②C.③D.④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com