【題目】
(1)求兩個動點(diǎn)運(yùn)動的速度;
(2)在數(shù)軸上標(biāo)出A、B兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動2秒時的位置;
(3)若表示數(shù)0的點(diǎn)記為O,A、B兩點(diǎn)分別從(2)中標(biāo)出的位置同時向數(shù)軸負(fù)方向運(yùn)動,再經(jīng)過多長時間,OB=2OA.
【答案】(1)動點(diǎn)A的速度是2單位長度/秒,動點(diǎn)B的速度是6單位長度/秒;(2)見解析;(3)見解析
【解析】試題分析:(1)設(shè)動點(diǎn)A的速度是x單位長度/秒,那么動點(diǎn)B的速度是3x單位長度/秒,然后根據(jù)2秒后,兩點(diǎn)相距16個單位長度即可列出方程解決問題;
(2)根據(jù)(1)的結(jié)果和已知條件即可得出.
(3)此問分兩種情況討論:設(shè)經(jīng)過時間為x后,B在A的右邊,若A在B的右邊,列出等式解出x即可;
解:(1)設(shè)動點(diǎn)A的速度是x單位長度/秒,
根據(jù)題意得2(x+3x)=16
∴8x=16,
解得:x=2,
則3x=6.
答:動點(diǎn)A的速度是2單位長度/秒,動點(diǎn)B的速度是6單位長度/秒;
(2)標(biāo)出A,B點(diǎn)如圖,
;
(3)設(shè)x秒時,OB=2OA,
當(dāng)B在A的右邊,
根據(jù)題意得:12﹣6x=2(4+2x),
∴x=0.4,
當(dāng)A在B的右邊,
根據(jù)題意得:6x﹣12=2(4+2x),
∴x=10
∴0.4,10秒時OB=2OA.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖南省邵陽市第7題)一元二次方程2x2﹣3x+1=0的根的情況是( )
A.有兩個相等的實(shí)數(shù)根 B.有兩個不相等的實(shí)數(shù)根
C.只有一個實(shí)數(shù)根 D.沒有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù) y=x+1 的圖象與 y 軸交于點(diǎn) A,一次函數(shù) y=kx+b 的圖象經(jīng)過點(diǎn) B(0,﹣1),與x 軸 以及 y=x+1 的圖象分別交于點(diǎn) C、D,且點(diǎn) D 的坐標(biāo)為(1,n),
(1)則n= ,k= ,b= ;
(2)函數(shù) y=kx+b 的函數(shù)值大于函數(shù) y=x+1 的函數(shù)值,則X的取值范圍是 ;
(3)求四邊形 AOCD 的面積;
(4)在 x軸上是否存在點(diǎn) P,使得以點(diǎn) P,C,D 為頂點(diǎn)的三角形是直角三角形?若存在求出點(diǎn) P 的坐標(biāo); 若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點(diǎn)D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )
A. 4cm B. 6cm C. 8cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C分別是線段A1B、B1C、C1A的中點(diǎn),若△ABC的面積是1,那么△A1BlC1的面積是( )
A.4 B.5 C.6 D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2),1個白球、1個黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是
(2)先從中任意摸出一個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表),求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b互為相反數(shù),c、d互為倒數(shù),m是絕對值等于3的負(fù)數(shù),則m2+(cd+a+b)×m+(cd)2009的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,O為AB上一點(diǎn),以O(shè)為圓心,OB長為半徑的圓,交BC邊于點(diǎn)D,與AC邊相切于點(diǎn)E.
(1)求證:BE平分∠ABC;
(2)若CD:BD=1:2,AC=4,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com