【題目】在中,對角線AC、BD交于點O,且分別平分∠DAB,∠ABC.
(1)請求出∠AOB的度數(shù),寫出AD、AB、BC之間的等量關系,并給予證明.
(2)設點P為對角線AC上一點,PB=5,若AD+BC=16,四邊形ABCD的面積為,求AP的長.
【答案】(1),;證明見解析;(2)的長為.
【解析】
(1)根據(jù)平行四邊形的性質(zhì)可得,由AC、BD分別平分∠DAB、∠ABC可得,根據(jù)三角形內(nèi)角和定理即可得∠AOB的度數(shù);根據(jù)平行線的性質(zhì)可得,即可證明,可得AB=BC,根據(jù)平行四邊形的性質(zhì)可得;
(2)根據(jù)AD+BC=16可得=8,當∠ABC>90°時,過點作,根據(jù)四邊形ABCD的面積可得DE的長,利用勾股定理可求出AE的長,進而可證明△DAB是等邊三角形,根據(jù)含30°角的直角三角形的性質(zhì)可得OA、OB的長,根據(jù)PB=5,利用勾股定理可得OP的長,即可求出AP的長;當∠ABC<90°時,可得OB>5,不符合題意,綜上即可得答案.
(1)∵四邊形ABCD為平行四邊形,
∴,
∴,
∵AC、BD分別平分∠DAB、∠ABC,
∴,
∴,
之間的等量關系為,
∵,
∴,
∵AC平分,
,
四邊形為平行四邊形,
(2)∵,
∴,
①如圖,當時,
過點作,
∵四邊形的面積為,
,
,
點為的中點,,
為等邊三角形,
∵∠AOB=90°,
,
∵,
或.
②如圖,當時,
,AE=4,
∴BE=12,
∴BD==,
∴,
所以這樣的點不存在,故排除.
綜上所述:的長為.
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級學習小組在探究學習過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.
(1)求證:AM=AN;
(2)當旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
已知,在Rt△ABC中,AC=BC,∠C=90°,D為AB邊的中點,∠EDF=90°,∠EDF繞點D旋轉(zhuǎn),它的兩邊分別交AC,CB(或它們的延長線)于點E,F.
(1)(問題發(fā)現(xiàn))
如圖1,當∠EDF繞點D旋轉(zhuǎn)到DE⊥AC于點E時(如圖1),
①證明:△ADE≌△BDF;
②猜想:S△DEF+S△CEF= S△ABC.
(2)(類比探究)
如圖2,當∠EDF繞點D旋轉(zhuǎn)到DE與AC不垂直時,且點E在線段AC上,試判斷S△DEF+S△CEF與S△ABC的關系,并給予證明.
(3)(拓展延伸)
如圖3,當點E在線段AC的延長線上時,此時問題(2)中的結論是否成立?若成立,請給予證明;若不成立,S△DEF,S△CEF,S△ABC又有怎樣的關系?(寫出你的猜想,不需證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設m是整數(shù),關于x的方程mx2-(m-1)x+1=0有有理根,則方程的根為( )。
A.
B.x=-1
C.
D.有無數(shù)個根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,C在D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在直線交于點E,∠ADC=70°.
(1)求∠EDC的度數(shù);
(2)若∠ABC=n°,求∠BED的度數(shù)(用含n的代數(shù)式表示);
(3)將線段BC沿DC方向平移,使得點B在點A的右側(cè),其他條件不變,畫出圖形并判斷∠BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖△ABC內(nèi)接于圓O,I是△ABC的內(nèi)心,AI的延長線交圓O于點D.
(1)求證:BD=DI;
(2)若OI⊥AD,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點P在CA的延長線上,∠CAD=45°.
(Ⅰ)若AB=4,求 的長;
(Ⅱ)若 = ,AD=AP,求證:PD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標;
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC的平分線交△ABC的外接圓于點D,∠ABC的平分線交AD于點E,
(1)求證:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com