【題目】為了解某校七年級學(xué)生的英語口語水平,隨機抽取該年級部分學(xué)生進(jìn)行英語口語測試,學(xué)生的測試成績按標(biāo)準(zhǔn)定為A、BC、D四個等級,并把測試成績繪成如圖所示的兩個統(tǒng)計圖表.

七年級英語口語測試成績統(tǒng)計表

成績

等級

人數(shù)

A

12

B

m

C

n

D

9

請根據(jù)所給信息,解答下列問題:

(1)本次被抽取參加英語口語測試的學(xué)生共有多少人?

(2)求扇形統(tǒng)計圖中C級的圓心角度數(shù);

(3)若該校七年級共有學(xué)生640人,根據(jù)抽樣結(jié)課,估計英語口語達(dá)到B級以上包括B的學(xué)生人數(shù).

【答案】(1)60人;(2)144°;(3)288人.

【解析】

等級人數(shù)除以其所占百分比即可得;

先求出A等級對應(yīng)的百分比,再由百分比之和為1得出C等級的百分比,繼而乘以即可得;

總?cè)藬?shù)乘以AB等級百分比之和即可得.

解:本次被抽取參加英語口語測試的學(xué)生共有人;
級所占百分比為,
級對應(yīng)的百分比為,
則扇形統(tǒng)計圖中C級的圓心角度數(shù)為;

答:估計英語口語達(dá)到B級以上包括B的學(xué)生人數(shù)為288人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2015南通)如圖,在ABCD中,點EF分別在AB,DC上,且EDDB,FBBD

(1)求證:AED≌△CFB;

(2)若∠A=30°,DEB=45°,求證:DA=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點AA1,A2A3An都在直線1yx+1上,點B,B1B2,B3Bn都在x軸上,且AB11,B1A1x軸,A1B21,B2A2x軸,則An的橫坐標(biāo)為_________(用含有n的代數(shù)式表示)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某電信公司提供了A,B兩種方案的移動通訊費用y(元)與通話時間x(元)之間的關(guān)系,則下列結(jié)論中正確的有(  )

(1)若通話時間少于120分,則A方案比B方案便宜20元;

(2)若通話時間超過200分,則B方案比A方案便宜12元;

(3)若通訊費用為60元,則B方案比A方案的通話時間多;

(4)若兩種方案通訊費用相差10元,則通話時間是145分或185分.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ykx4k+4與拋物線yx2x交于AB兩點.

1)直線總經(jīng)過定點,請直接寫出該定點的坐標(biāo);

2)點P在拋物線上,當(dāng)k=﹣時,解決下列問題:

在直線AB下方的拋物線上求點P,使得△PAB的面積等于20

連接OA,OB,OP,作PCx軸于點C,若△POC和△ABO相似,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經(jīng)確定,遇險拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時,問漁船在B處需要等待多長時間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結(jié)果精確到0.1小時)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象如圖所示,則下列結(jié)論:(14a+2b+c0;(2)方程ax2+bx+c0兩根都大于零;(3yx的增大而增大;(4)一次函數(shù)yx+bc的圖象一定不過第二象限.其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB中,ABOB,且AB=OB=3,設(shè)直線截此三角形所得陰影部分的面積為S,則St之間的函數(shù)關(guān)系的圖象為下列選項中的( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點,拋物線上另有一點Cx軸下方,且使OCA∽△OBC.

(1)求線段OC的長度;

(2)設(shè)直線BCy軸交于點M,點CBM的中點時,求直線BM和拋物線的解析式;

(3)在(2)的條件下,直線BC下方拋物線上是否存在一點P,使得四邊形ABPC面積最大?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案