【題目】ABCD中,過(guò)點(diǎn)DDEAB于點(diǎn)E,點(diǎn)FCD上,CF=AE,連接BFAF

1)求證:四邊形BFDE是矩形;

2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面積.

【答案】(1)詳見(jiàn)解析;(2)20.

【解析】試題分析:(1)根據(jù)有一個(gè)角是90度的平行四邊形是矩形可判定,

(2)首先證明AD=DF,求出AD即可解決問(wèn)題.

試題解析: (1)∵四邊形ABCD是平行四邊形,

AB=CD,ABCD,BEDF,

CF=AE,

DF=BE,

∴四邊形BFDE是平行四邊形,

DEAB,∴∠DEB=90°,∴四邊形BFDE是矩形.

(2)因?yàn)?/span>ABCD ,所以∠BAF=AFD,因?yàn)?/span>AF平分∠BAD,所以∠DAF=AFD,所以AD=DF,在直角三角形ADE,因?yàn)?/span>AE=3,DE=4,所以AD=5,所以矩形的面積為20.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)(1)班體育委員統(tǒng)計(jì)了全班同學(xué)60秒跳繩次數(shù),并列出了下面的不完整頻數(shù)分布表和不完整的頻數(shù)分布直方圖.根據(jù)圖表中的信息解答問(wèn)題

組別

跳繩次數(shù)

頻數(shù)

A

60≤x<80

2

B

80≤x<100

6

C

100≤x<120

18

D

120≤x<140

12

E

140≤x<160

a

F

160≤x<180

3

G

180≤x<200

1

合計(jì)

50

(1)求a的值;

(2)求跳繩次數(shù)x120≤x<180范圍內(nèi)的學(xué)生的人數(shù);

(3)補(bǔ)全頻數(shù)分布直方圖,并指出組距與組數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:

(1)已知:,求的值.

(2)已知:,求的值.

(3)已知:,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,網(wǎng)格中每個(gè)小正方形邊長(zhǎng)為1,△ABC的頂點(diǎn)都在格點(diǎn)(網(wǎng)格線的交點(diǎn))上.將△ABC向左平移2格,再向上平移3格,得到△ABC′.

(1)請(qǐng)?jiān)趫D中畫(huà)出平移后的△ABC′;

(2)畫(huà)出平移后的△ABC′的中線BD′;

(3)若連接BB′,CC′,則這兩條線段的關(guān)系是_______

(4)ABC的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC是等邊三角形,在直線AC、直線BC上分別取點(diǎn)D和點(diǎn)且AD=CE,直線BD、AE相交于點(diǎn)F.

(1)如圖1所示,當(dāng)點(diǎn)D、點(diǎn)E分別在線段CA、BC上時(shí),求證:BD=AE;

(2)如圖2所示,當(dāng)點(diǎn)D、點(diǎn)E分別在CA、BC的延長(zhǎng)線時(shí),求∠BFE的度數(shù);

(3)如圖3所示,在(2)的條件下,過(guò)點(diǎn)CCMBD,交EF于點(diǎn)M,若DF:AF:AM=1:2:4,BC=12,求CE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把任意一個(gè)各個(gè)數(shù)位上的數(shù)字均不為0的多位自然數(shù)稱(chēng)為完美數(shù),若將一個(gè)三位完美數(shù)的各數(shù)位上的數(shù)字兩兩組合,形成六個(gè)新的兩位數(shù),我們將這六個(gè)兩位相加的和,叫做該三位完美數(shù)完美雙和,然后用所得的完美雙和除以18,得到的結(jié)果記為,例如“271”是一個(gè)三位完美數(shù),六個(gè)新數(shù)為27,2172,71,12,則:

1)填空:______;

2)證明:任意一個(gè)三位完美數(shù)完美雙和與該三位完美數(shù)各數(shù)位上數(shù)字之差能被21除;

3)已知一個(gè)三位完美數(shù)其中,x,均為整數(shù),滿足百位數(shù)字與個(gè)位數(shù)字之和等于十位數(shù)字的2倍加1,求出

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EF∥AD∠1 =∠2,∠BAC = 75°將求∠AGD的過(guò)程填寫(xiě)完整

解:∵EF∥AD

∴ ∠2 = ( 

∵ ∠1 = ∠2

∴ ∠1 = ∠3。(      

∴AB∥ 。(     

∴∠BAC + = 180°。(   

∵∠BAC=75°∴∠AGD = 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC延長(zhǎng)線上,連接AD,過(guò)B作BE⊥AD,垂足為E,交AC于點(diǎn)F,連接CE.

(1)求證:CF=CD;
(2)求證:DADE=DBDC;
(3)探究線段AE,BE,CE之間滿足的等量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩種型號(hào)的風(fēng)扇成本分別為120元臺(tái)、170元臺(tái),銷(xiāo)售情況如下表所示(成本、售價(jià)均保持不變,利潤(rùn)=收入-成本)

(1)求這兩種型號(hào)風(fēng)扇的售價(jià);

(2)該商場(chǎng)打算再采購(gòu)這兩種型號(hào)的風(fēng)扇共130臺(tái),銷(xiāo)售完后總利潤(rùn)能不能恰好為8010?若能,給出相應(yīng)的采購(gòu)方案;若不能,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案