如圖,點(diǎn)P是的邊OB上的一點(diǎn).
(1)過點(diǎn)P畫OB的垂線,交OA于點(diǎn)C;
(2)過點(diǎn)P畫OA的垂線,垂足為H;
(3)線段PH的長度是點(diǎn)P到 的距離,線段 的長度是點(diǎn)C到直線OB的距離.因?yàn)橹本外一點(diǎn)到直線上各點(diǎn)連接的所有線中,垂線段最短,所以線段PC、PH、OC這三條線段大小關(guān)系是 .(用“<”號(hào)連接)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于的方程的解和方程的解相同.
(1) 求的值;
(2) 已知線段AB=,在線段AB上取一點(diǎn)P,恰好使AP=2PB,點(diǎn)Q為PB的中點(diǎn),
求線段AQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,兩個(gè)形狀.大小完全相同的含有30゜、60゜的三角板如圖放置,PA、PB與直線MN重合,且三角板PAC,三角板PBD均可以繞點(diǎn)P逆時(shí)針旋轉(zhuǎn).
(1)試說明:∠DPC=90゜;
(2)如圖,若三角板PAC的邊PA從PN處開始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;
(3)如圖,若三角板PAC的邊PA從PN處開始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為3゜/秒,同時(shí)三角板PBD的邊PB從PM處開始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為2゜/秒,在兩個(gè)三角板旋轉(zhuǎn)過程中(PC轉(zhuǎn)到與PM重合時(shí),兩三角板都停止轉(zhuǎn)動(dòng)).設(shè)兩個(gè)三角板旋轉(zhuǎn)時(shí)間為t秒,則∠BPN= ,∠CPD= (用含有t的代數(shù)式表示,并化簡);以下兩個(gè)結(jié)論:①為定值;②∠BPN+∠CPD為定值,正確的是
(填寫你認(rèn)為正確結(jié)論的對(duì)應(yīng)序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某年級(jí)380名師生秋游,計(jì)劃租用7輛客車,現(xiàn)有甲、乙兩種型號(hào)客車,它們的載客量和租金如表.
甲種客車 | 乙種客車 | |
載客量(座/輛) | 60 | 45 |
租金(元/輛) | 550 | 450 |
(1)設(shè)租用甲種客車x輛,租車總費(fèi)用為y元.求出y(元)與x(輛)之間的函數(shù)表達(dá)式;
(2)當(dāng)甲種客車有多少輛時(shí),能保障所有的師生能參加秋游且租車費(fèi)用最少,最少費(fèi)用是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com