如圖,在離水面高度為5米的岸上有人用繩子拉船靠岸,開始時繩子與水面的夾角為30°,此人以每秒0.5米收繩.問:未開始收繩子的時候,圖中繩子BC的長度是    米;收繩8秒后船向岸邊移動了    米.(結果保留根號)
【答案】分析:利用30°的正弦值可得未開始收繩子的時候,圖中繩子BC的長度;
利用30°的余弦值可得未開始收繩子的時候AB長,易得收繩后BC長,利用勾股定理可得收繩后AB長,讓未收繩時AB長減去收繩后AB長即為船向岸邊移動的距離.
解答:解:(1)如圖,在Rt△ABC中,=sin30°,
∴BC==10米;

(2)未收繩時AB=5÷tan30°=5
收繩8秒后,繩子BC縮短了4米,只有6米,即CD=6米,
在Rt△ACD中,由AC=5米,CD=6米,
根據(jù)勾股定理得船到河岸的距離AD=米.
故移動距離DB=AB-AD=()米,
故答案為().
點評:考查解直角三角形在實際生活中的應用,用到的知識點為:知道對邊求斜邊,可用正弦值,用除法;知道對邊,求鄰邊,用除法,用正切值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在離水面高度為5米的岸上有人用繩子拉船靠岸,開始時繩子與水面的夾角為30°,此人以每秒0.5米收繩.問:8秒后船向岸邊移動了多少米?(結果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在離水面高度為4米的岸上用繩子拉船靠岸,開始時繩子與水面的夾精英家教網(wǎng)角為30°.
求(1)繩子至少有多長?
(2)若此人以每秒0.5米收繩.問:6秒后船向岸邊大約移動了多少米?(參考數(shù)據(jù):
3
≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在離水面高度為5米的岸上有人用繩子拉船靠岸,開始時繩子與水面的夾角為30°,此人以每秒0.5米收繩.問:未開始收繩子的時候,圖中繩子BC的長度是
 
米;收繩8秒后船向岸邊移動了
 
米.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•合肥模擬)如圖,在離水面高度為5m的岸上有人用繩子拉船靠岸,開始繩子與水面的夾角為30°,此人以每秒0.5m的速度收繩.
(1)8秒后船向岸邊移動了多少米?
(2)寫出還沒收的繩子的長度S米與收繩時間t秒的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在離水面高度為5米的岸上有人用繩子拉船靠岸,開始時繩子與水面的夾角為30°,此人以每秒0.5米收繩.則當收繩8秒后船向岸邊移動了
(5
3
-
11
(5
3
-
11
米(結果保留根號).

查看答案和解析>>

同步練習冊答案