【題目】A,CD三點的圓的圓心為E,過BE兩點的圓的圓心為D,如果∠A=60°,那么∠B________.

【答案】20°

【解析】

連接DE、CE,如圖,設∠B=x,根據(jù)等腰三角形的性質(zhì)由EA=EC得到∠A=ACE,再根據(jù)三角形內(nèi)角和定理得到∠4=180°-2A=180°-120°=60°,而DE=DB,∠1=B=x,利用三角形外角性質(zhì)得到∠2=1+B=2x,然后根據(jù)三角形外角性質(zhì)得到2x+x=60°,即可解答.

連接DE、CE,如圖,設∠B=x

∵過A,C,D三點的圓的圓心為E,

EA=EC=ED

∴∠A=ACE

∴∠4=180°-2A=180°-120°=60°

∵過B,E兩點的圓的圓心為D,

DE=DB

∴∠1=B=x

∴∠2=1+B=2x

EC=ED

∴∠3=2=2x

4=3+B

2x+x=60°,即x=20°

即∠B=20°

故答案為:20°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可銷售20件,每件盈利40元.為了擴大銷售量,增加盈利,盡量減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價5元,商場平均每天可多售出10件.

(1)若每件襯衫降價4元,商場每天可盈利多少元?

(2)若商場平均每天要盈利1200元,每件襯衫應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 若一個四邊形的兩條對角線互相垂直且相等,則稱這個四邊形為奇妙四邊形.如圖1,四邊形ABCD中,若AC=BD,ACBD,則稱四邊形ABCD為奇妙四邊形.根據(jù)奇妙四邊形對角線互相垂直的特征可得奇妙四邊形的一個重要性質(zhì):奇妙四邊形的面積等于兩條對角線乘積的一半.根據(jù)以上信息回答:

1)矩形 奇妙四邊形(填“是”或“不是”);

2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是奇妙四邊形,若⊙O的半徑為6,∠ BCD=60°.求奇妙四邊形ABCD的面積;

3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是奇妙四邊形作OMBCM.請猜測OMAD的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠CAB=70°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△ABC′的位置,使得CC′∥AB,則∠BAB′=________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)ykx2﹣(k+3x+3圖象的對稱軸為:直線x2

1)求該二次函數(shù)的表達式;

2)畫出該函數(shù)的圖象,并結(jié)合圖象直接寫出:

y0時,自變量x的取值范圍;

0x3時,y的取值范圍是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,ABAC,點A在以BC為直徑的半圓內(nèi).請僅用無刻度的直尺分別按下列要求畫圖(保留畫圖痕跡).

1)在圖1中作弦EF,使EFBC;

2)在圖2中作出圓心O

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(3,0),C(1,﹣1),ACx軸于點P.

(1)ACB的度數(shù)為_____

(2)P點坐標為______;

(3)以點O為位似中心,將△ABC放大為原來的2倍,請在圖中畫出所有符合條件的三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.

(1)請直接寫出D點的坐標.

(2)求二次函數(shù)的解析式.

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a10m),圍成中間隔有一道籬笆的長方形花圃.設花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關(guān)系式;

2)如果要圍成面積為45m2的花圃,AB的長是多少米?

3)能圍成面積比45 m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.

查看答案和解析>>

同步練習冊答案