【題目】在下列語(yǔ)句中:
①由∠A:∠B:∠C=4:3:2可確定△ABC是銳角三角形;
②若三角形的兩邊長(zhǎng)是3和4,且周長(zhǎng)是偶數(shù),則這個(gè)三角形的第三邊是3或5;
③一個(gè)圖形和它經(jīng)過(guò)平移所得的圖形中,兩組對(duì)應(yīng)點(diǎn)的連線(xiàn)互相平行;
④若一個(gè)多邊形的外角和是內(nèi)角和的,則這個(gè)多邊形是十二邊形.
其中正確的是_________(只要寫(xiě)序號(hào)).
【答案】①②④
【解析】試題分析:①∵∠A:∠B:∠C=4:3:2,∴∠A=180°×=80°,∴△ABC是銳角三角形,故此項(xiàng)正確;
②三角形的兩邊長(zhǎng)是3和4,設(shè)第三邊長(zhǎng)為x,則1<x<7,
∵周長(zhǎng)是偶數(shù),
∴第三邊長(zhǎng)為奇數(shù),
∴這個(gè)三角形的第三邊是3或5,故此項(xiàng)正確;
③一個(gè)圖形和它經(jīng)過(guò)平移所得的圖形中,兩組對(duì)應(yīng)點(diǎn)的連線(xiàn)互相平行(或在同一條直線(xiàn)上),故此項(xiàng)錯(cuò)誤;
④若一個(gè)多邊形的外角和是內(nèi)角和的,則多邊形的內(nèi)角和為360°×5=1800°,則這個(gè)多邊形是十二邊形,故此項(xiàng)正確.
故答案為:①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為a的正方形中挖去一個(gè)邊長(zhǎng)為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個(gè)矩形(如圖乙),根據(jù)兩個(gè)圖形中陰影部分的面積相等,可以驗(yàn)證( )
A. (a+b)2=a2+2ab+b2
B. (a﹣b)2=a2﹣2ab+b2
C. a2﹣b2=(a+b)(a﹣b)
D. (a+2b)(a﹣b)=a2+ab﹣2b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小軍同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶(hù)居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶(hù)居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
(1)請(qǐng)根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
月均用水量/t | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 | ||
5≤x<6 | 10 | 20% |
6≤x<7 | 12% | |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(2)如果家庭月均用水量“大于或等于4 t且小于7 t”為中等用水量家庭,請(qǐng)你通過(guò)樣本估計(jì)總體中的中等用水量家庭大約有多少戶(hù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了預(yù)防流感,某學(xué)校在休息天用藥薰消毒法對(duì)教室進(jìn)行消毒.已知藥物釋放過(guò)程中,室內(nèi)每立方米空氣中含藥量y(毫克)與時(shí)間x(分鐘)成正比例;藥物釋放完畢后,y與x成反比例,如圖所示.根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)寫(xiě)出從藥物釋放開(kāi)始,y與x之間的兩個(gè)函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到0.45毫克以下時(shí),學(xué)生方可進(jìn)入教室,那么從藥物釋放開(kāi)始,至少需要經(jīng)過(guò)多少小時(shí)后,學(xué)生才能進(jìn)入教室?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=2,AD=4,∠DAB=90°,AD∥BC.E是射線(xiàn)BC上的動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)B不重合),M是線(xiàn)段DE的中點(diǎn),連結(jié)BD,交線(xiàn)段AM于點(diǎn)N,如果以A,N,D為頂點(diǎn)的三角形與△BME相似,則線(xiàn)段BE的長(zhǎng)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=65°∠C=45°,AD是BC邊上的高,AE是∠BAC的平線(xiàn),求∠DAE的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線(xiàn)MN與直線(xiàn)AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).
(1)試判斷直線(xiàn)AB與直線(xiàn)CD的位置關(guān)系,并說(shuō)明理由;
(2)如圖2,∠BEF與∠EFD的角平分線(xiàn)交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問(wèn)∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)物學(xué)家通過(guò)大量的調(diào)查估計(jì)出,某種動(dòng)物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動(dòng)物活到25歲的概率為多少?現(xiàn)年25歲的這種動(dòng)物活到30歲的概率為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com