【題目】四邊形是菱形,,
(1)如圖1,作的平分線,交于(不寫作法和證明,保留作圖痕跡)
(2)在(1)的條件下,點(diǎn)在直線上,最大值時(shí),求的長
(3)如圖2,,分別是線段,上的動(dòng)點(diǎn),,求四邊形周長的最小值.
【答案】(1)見解析(2);(3)
【解析】
(1)根據(jù)角平分線尺規(guī)作圖的方法作圖即可;
(2)先在直線OP上任取一點(diǎn)P,根據(jù)OD是AB的垂直平分線,根據(jù)PA=PB得出PC-PB<BC,得出當(dāng)P、B、C三點(diǎn)共線的時(shí)候最大,結(jié)合等腰三角形三線合一以及三角函數(shù)即可求出OP的長
(3)先證明△ABE≌△OBF,得到AE=OF,可得四邊形周長等于2BE+OA,可得出當(dāng)BE最短時(shí),四邊形周長最小,再根據(jù)垂線段最短,可得當(dāng)BE垂直AO時(shí),BE最短,再根據(jù)三角函數(shù)求出此時(shí)BE的長
解:(1)作圖如下:
(2)如圖:在直線OD上任取一點(diǎn)P,連接PA、PB、PC
∵是菱形,
∴∠OAB=60°,∠AOB=120°
∴;
∴△AOB為等邊三角形
∵OD平分∠AOB
∴OD⊥AB,且D為AB中點(diǎn);
∴OD為AB的垂直平分線
∴PA=PB
∴
∴當(dāng)P、B、C三點(diǎn)共線時(shí),有最大值,即有最大值
如下圖,延長CB交OD于P,點(diǎn)即為所求
∵∠OBC=60°
∴∠OBP=120°
又∵∠DOB=30°
∴∠OPD=30°
∴OB=PB
∵OD⊥AB
∴D為OP中點(diǎn)
在Rt△OBD中,OB=6,∠DOB=30°
∴
∴OP=2OD=
即:當(dāng)OP=時(shí),有最大值
(3)如圖,連接EF
∵由(1)知△AOB為等邊三角形
∴∠ABO=∠ABE+∠EBO=60°
∵∠EBF=∠OBF+∠EBO=60°
∴∠ABE=∠OBF
在△ABE與△OBF中
∴△ABE≌△OBF(ASA)
∴BE=BF,AE=OF
∵四邊形周長=BE+BF+OF+OE=2BE+AE+OE=2BE+OA
∵OA=OB=6
∴四邊形周長=2BE+6
∴當(dāng)BE最小時(shí),四邊形周長最小
∴當(dāng)BE⊥OA時(shí),BE最短
在Rt△ABE中,∠A=60°,AB=6
∴
∴四邊形周長最小值是
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上有A. B.C三點(diǎn),分別表示有理數(shù)26,10,10,動(dòng)點(diǎn)P從A出發(fā),以每秒1個(gè)單位的速度向終點(diǎn)C移動(dòng),設(shè)點(diǎn)P移動(dòng)時(shí)間為t秒。
(1)PA= ,PC= (用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q從A點(diǎn)出發(fā),以每秒3個(gè)單位的速度向C點(diǎn)運(yùn)動(dòng),Q點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),P、Q兩點(diǎn)運(yùn)動(dòng)停止,
①當(dāng)P、Q兩點(diǎn)運(yùn)動(dòng)停止時(shí),求點(diǎn)P和點(diǎn)Q的距離;
②求當(dāng)t為何值時(shí)P、Q兩點(diǎn)恰好在途中相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司招聘職員兩名,對甲、乙、丙、丁四名候選人進(jìn)行了筆試和面試,然后再按筆試占、面試占計(jì)算候選人的綜合成績.他們的各項(xiàng)成績?nèi)缦卤硭荆?/span>
候選人 | 筆試成績/分 | 面試成績/分 |
甲 | ||
乙 | ||
丙 | ||
丁 |
(1)現(xiàn)得知候選人丙的綜合成績?yōu)?/span>分,求表中的值
(2)求出其余三名候選人的綜合成績,并以綜合成績排序確定所要招聘的前兩名的人選.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù)的圖象與性質(zhì).
小王根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小亮的探究過程,請你幫忙補(bǔ)充完整:
(1)下表是與的幾組對應(yīng)值
… | … | ||||||||||
… | … |
則_______;_______;
(2)在平面直角坐標(biāo)系中,描出以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象:
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)時(shí),直接寫出所有滿足條件的的近似值(精確到).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正三角形內(nèi)的一點(diǎn),且,,.若將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°后,得到,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有邊長為1的等邊三角形和頂角為120°的等腰,以為頂點(diǎn)作角,兩邊分別交、于、,連結(jié),則的周長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)4﹣(﹣2.75);
(2)﹣32×;
(3)1﹣;
(4)16÷(﹣2)3÷×(﹣4)+(﹣1)2019.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P在CD上,已知∠BAP+∠APD=180°,∠1=∠2,請?zhí)顚?/span>AE∥PF的理由.
解:因?yàn)椤?/span>BAP+∠APD=180° ,
∠APC+∠APD=180° ,
所以∠BAP=∠APC .
又∠1=∠2 ,
所以∠BAP﹣∠1=∠APC﹣∠2 .
即∠EAP=∠APF.
所以AE∥PF .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com