【題目】2020賀歲片《囧媽》提檔大年三十網(wǎng)絡(luò)首播.“樂調(diào)查”平臺為了全面了解觀眾對《囧媽》的滿意度情況,進行隨機抽樣調(diào)查,分為四個類別:.非常滿意;.滿意;.基本滿意;.不滿意,依據(jù)調(diào)查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計圖(不完整).
根據(jù)以上信息,解答下列問題:
(1)本次接受調(diào)查的觀眾共有_______人;
(2)扇形統(tǒng)計圖中,扇形的圓心角度數(shù)是_______;
(3)請補全條形統(tǒng)計圖;
(4)“樂調(diào)查”平臺調(diào)查了春節(jié)期間觀看《固媽》的觀眾約5000人,請估計觀眾對該電影的滿意(、、類視為滿意)的人數(shù).
【答案】(1)100;(2);(3)作圖見解析;(4)估計觀眾對該電影的滿意(A、B、C類視為滿意)的人數(shù)為4500人.
【解析】
(1)利用B的人數(shù)除以B所占百分比可得答案;
(2)用360°乘以C所占比例可得扇形C的圓心角度數(shù);
(3)用總?cè)藬?shù)減去B、C、D三類人數(shù)可得A類人數(shù),再補圖即可;
(4)利用樣本估計總體的方法計算即可.
(1)本次接受調(diào)查的觀眾:25÷25%=100(人),
故答案為:100;
(2)扇形C的圓心角度數(shù)是:360°×=54°
故答案為:54°;
(3)A類別的人數(shù):100251510=50(人),
如圖所示;
(4)5000×
=4500(人),
答:估計觀眾對該電影的滿意(A、B、C類視為滿意)的人數(shù)為4500人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,點是的中點,點是線段的一個動點,點是線段上的點,,連接將沿翻折,點的對應(yīng)點為點,連接,,若為直角三角形,則為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E為對角線AC上一點,且AECB,連接DE并延長交BC于點G,過點A作AH⊥BE于點H,交BC于點F.以下結(jié)論:①BHHE;②∠BEG45°;③△ABF ≌△DCG; ④4BH2BG·CD.其中正確結(jié)論的個數(shù)是( )
A.1個B.2
C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,D為的中點,過D作DF⊥AB于點E,交⊙O于點F,交弦BC于點G,連接CD,BF.
(1)求證:△BFG≌△DCG;
(2)若AC=10,BE=8,求BF的長;
(3)在(2)的條件下,P為⊙O上一點,連接BP,CP,弦CP交直徑AB于點H,若△BPH與△CPB相似,求CP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在∠DAM內(nèi)部做Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,點N為BC的中點,動點E由A點出發(fā),沿AB運動,速度為每秒5個單位,動點F由A點出發(fā),沿AM運動,速度為每秒8個單位,當點E到達點B時,兩點同時停止運動,過A、E、F作⊙O.
(1)判斷△AEF的形狀為 ,并判斷AD與⊙O的位置關(guān)系為 ;
(2)求t為何值時,EN與⊙O相切,求出此時⊙O的半徑,并比較半徑與劣弧長度的大小;
(3)直接寫出△AEF的內(nèi)心運動的路徑長為 ;(注:當A、E、F重合時,內(nèi)心就是A點)
(4)直接寫出線段EN與⊙O有兩個公共點時,t的取值范圍為 .
(參考數(shù)據(jù):sin37°=,tan37°=,tan74°≈,sin74°≈,cos74°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖1,四邊形是正方形,分別在邊、上,且,我們把這種模型稱為“半角模型”,在解決“半角模型”問題時,旋轉(zhuǎn)是一種常用的方法.
(1)在圖l中,連接,為了證明結(jié)論“”,小亮將繞點順時針旋轉(zhuǎn)后解答了這個問題,請按小亮的思路寫出證明過程;
(2)如圖2,當繞點旋轉(zhuǎn)到圖2位置時,試探究與、之間有怎樣的數(shù)量關(guān)系?
(3)如圖3,如果四邊形中,,,,且,,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知中點分別在邊、邊上,連接點、點在直線同側(cè),連接且.
(1)點與點重合時,
①如圖1,時,和的數(shù)量關(guān)系是 ;位置關(guān)系是 ;
②如圖2,時,猜想和的關(guān)系,并說明理由;
(2)時,
③如圖3,時,若求的長度;
④如圖4,時,點分別為和的中點,若,直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠BAC=30°,把△ABC繞著點A順時針旋轉(zhuǎn)到△ADE的位置,使得點D,A,C在同一直線上.
(1)△ABC旋轉(zhuǎn)了多少度?
(2)連接CE,試判斷△AEC的形狀;
(3)求 ∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件8元,出廠價為每件10元,每月銷售量y(件)與銷售單價x(元)之間的關(guān)系近似滿足一次函數(shù):y=-10x+500.
(1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20元,那么政府這個月為他承擔的總差價為多少元?
(2)設(shè)李明獲得的利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3410元,那么政府為他承擔的總差價最少為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com