【題目】如圖,已知一次函數(shù)y1=-x+b的圖象交x軸于點A(3,0),與一次函數(shù)y2=x+1的圖象交于點B,
(1)求一次函數(shù)y1=-x+b的表達式;
(2)當x取哪些值時,0<y1<y2?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過D作DO⊥AB,垂足為O,點B′在邊AB上,且與點B關于直線DO對稱,連接DB′,AD.
(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長;
(3)當△AB′D為等腰三角形時,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)若直線上有個點,一共有________條線段;
若直線上有個點,一共有________條線段;
若直線上有個點,一共有________條線段;
若直線上有個點,一共有________條線段;
(2)有公共頂點的條射線可以組成_____個小于平角的角;
有公共頂點的條射線最多可以組成_____個小于平角的角;
有公共頂點的條射線最多可以組成_____個小于平角的角;
有公共頂點的條射線最多可以組成_____個小于平角的角;
(3)你學過的知識里還有滿足類似規(guī)律的嗎?試看寫一個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,射線OC在∠AOB的內部,圖中共有3個角:∠AOB,∠AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB的“巧分線”.如圖②,若,且射線PQ繞點P從PN位置開始,以每秒15°的速度逆時針旋轉,射線PM同時繞點P以每秒5°的速度逆時針旋轉,當PQ與PN成180°時,PQ與PM同時停止旋轉,設旋轉的時間為t秒.當射線PQ是∠MPN的“巧分線”時,t的值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O為圓心,OA為半徑的圓分別交AB,AC于點E,D,在BC的延長線上取點F,使得BF=EF,EF與AC交于點G.
(1)試判斷直線EF與⊙O的位置關系,并說明理由;
(2)若OA=2,∠A=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D是邊AB上一點,且∠A=2∠DCB.E是BC邊上的一點,以EC為直徑的⊙O經過點D.
(1)求證:AB是⊙O的切線;
(2)若CD的弦心距為1,BE=EO,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)代互聯(lián)網技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關系式;
(2)小明選擇哪家快遞公司更省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高.點O是AC中點,延長DO到E,使OE=OD,連接AE,CE.
(1)求證:四邊形ADCE的是矩形;
(2)若AB=17,BC=16,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店進行打折銷售,明明買了兩件衣服,第一件打八折,第二件打六折,共計220元,付款后,收銀員發(fā)現(xiàn)結算時不小心把兩件衣服的標價計算反了,又找給明明20元,則這兩件衣服原標價各是____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com