【題目】如圖,在平行四邊形ABCD中,ABBC,按以下步驟作圖:以A為圓心,小于AD的長為半徑畫弧,分別交AB、CDEF;再分別以E、F為圓心,大于EF的長半徑畫弧,兩弧交于點G;作射線AGCD于點H.則下列結(jié)論:①AG平分∠DABCH=DH,③△ADH是等腰三角形,④SADH=S四邊形ABCH

其中正確的有(  )

A. ①②③ B. ①③④ C. ②④ D. ①③

【答案】D

【解析】試題分析:如圖,連接EG,FG,

由作圖可得,AE=AF,EG=FG

∵AG=AG,∴△AEG≌△AFGSSS)。

∴∠EAG=∠FAG,即AG平分∠DAB。故結(jié)論正確。

③∵在平行四邊形ABCD中,DC∥AB,∴∠HAB=DHA。

①∠HAB=∠HAD∴∠HAD=DHA。∴DA=DH,即△ADH是等腰三角形。故結(jié)論正確。

CHDH,由可得AB=DCAD,與已知ABCD條件不符。故結(jié)論錯誤。

SADHS四邊形ABCH,由可得AB=DCAD,與已知ABCD條件不符。故結(jié)論錯誤。

綜上所述,正確的有①③。故選D。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標(biāo)為(1,2).

1)寫出點A、B的坐標(biāo):

2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,則A′B′C′的三個頂點坐標(biāo)分別是A′(,)、B′(,)、C′(,).

3△ABC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9歲的小芳身高1.36米,她的表姐明年想報考北京的大學(xué).表姐的父母打算今年暑假帶著小芳及其表姐先去北京旅游一趟,對北京有所了解.他們四人731日下午從蘇州出發(fā),1日到4日在北京旅游,85日上午返回蘇州.

蘇州與北京之間的火車票和飛機票價如下:火車 (高鐵二等座) 全票524元,身高1.11.5米的兒童享受半價票;飛機 (普通艙) 全票1240元,已滿2周歲未滿12周歲的兒童享受半價票.他們往北京的開支預(yù)計如下:

住宿費

2人一間的標(biāo)準(zhǔn)間)

伙食費

市內(nèi)交通費

旅游景點門票費

(身高超過1.2米全票)

每間每天x

每人每天100

每人每天y

每人每天120

假設(shè)他們四人在北京的住宿費剛好等于上表所示其他三項費用之和,731日和85日合計按一天計算,不參觀景點,但產(chǎn)生住宿、伙食、市內(nèi)交通三項費用.

1)他們往返都坐火車,結(jié)算下來本次旅游總共開支了13668元,求x,y的值;

2)他們往返都坐飛機 (成人票五五折),其他開支不變,至少要準(zhǔn)備多少元?

3)他們?nèi)r坐火車,回來坐飛機 (成人票五五折),其他開支不變,準(zhǔn)備了14000元,是否夠用?如果不夠,他們準(zhǔn)備不再增加開支,而是壓縮住宿的費用,請問他們預(yù)定的標(biāo)準(zhǔn)間房價每天不能超過多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀了其中的奧秘.

你知道怎樣迅速準(zhǔn)確的計算出結(jié)果嗎?請你按下面的問題試一試:

,,又

,

能確定59319的立方根是個兩位數(shù).

59319的個位數(shù)是9,又

能確定59319的立方根的個位數(shù)是9.

③如果劃去59319后面的三位319得到數(shù)59,

,則,可得

由此能確定59319的立方根的十位數(shù)是3

因此59319的立方根是39.

(1)現(xiàn)在換一個數(shù)110592,按這種方法求立方根,請完成下列填空.

①它的立方根是 位數(shù).

②它的立方根的個位數(shù)是

③它的立方根的十位數(shù)是

110592的立方根是

(2)請直接填寫結(jié)果:

;

;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點C在AOB的一邊OA上,過點C的直線DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度數(shù);

(2)求證:CG平分OCD;

(3)當(dāng)O為多少度時,CD平分OCF,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,EAD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=EAB,連接AG

1)如圖①,當(dāng)EFAB相交時,若∠EAB=60°,求證:EG=AG+BG

2)如圖②,當(dāng)EFCD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(-1,5),B(-1,0),C(-4,3).

(1)求ΔABC的面積;

(2)在圖中畫出ΔABC向右平移3個單位,再向下平移2個單位的圖形△A1B1C1;

(3)寫出點A1,B1,C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了以“人生觀、價值觀”為主題的班隊活動.活動結(jié)束后,初三(2)班數(shù)學(xué)興趣小組提出了5個主要觀點并在本班50名學(xué)生中進行了調(diào)査(要求每位同學(xué)只選自己最認可的一項觀點),并制成了如圖所示的扇形統(tǒng)計圖.
(1)該班學(xué)生選擇“和諧”觀點的有人,在扇形統(tǒng)計圖中,“和諧”觀點所在扇形區(qū)域的圓心角是
(2)如果該校有1500名初三學(xué)生.利用樣本估計選擇“感恩”觀點的初三學(xué)生約有人.
(3)如果數(shù)學(xué)興趣小組在這5個主要觀點中任選兩項觀點在全校學(xué)生中進行調(diào)查.求恰好選到“和諧”和“感恩”觀點的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:

A

B

載客量(人/輛)

45

30

租金(元/輛)

400

280

某中學(xué)根據(jù)實際情況,計劃租用A,B型客車共5輛,同時送七年級師生到基地校參加社會實踐活動.設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:

(1)用含x的式子填寫下表:

車輛數(shù)(輛)

載客量

租金(元)

A

x

45x

400x

B

5﹣x

   

   

(2)若要保證租車費用不超過1900元,求x的最大值.

查看答案和解析>>

同步練習(xí)冊答案