【題目】如圖1,在矩形ABCD中,AB=5BC=4,EBC邊上一點,連接DE,將矩形ABCD沿DE折疊,頂點C恰好落在AB邊上點F處,延長DEAB的延長線于點G

1)求線段BE的長;

2)連接CG,求證:四邊形CDFG是菱形;

3)如圖2,PQ分別是線段DG,CG上的動點(與端點不重合),且∠CPQ=CDP,是否存在這樣的點P,使△CPQ是等腰三角形?若存在,請直接寫出DP的值,若不存在,請說明理由.

【答案】1;(2)見解析;(3)存在,

【解析】

1)設,由矩形的性質,折疊的性質和勾股定理得出BF,EF的值,然后在中利用勾股定理即可求解;

2)由矩形的性質得出,然后根據(jù)平行線分線段成比例可求出BG的長度,進而可求出FG的長度,則可證明結論;

3)分兩種情況:,分別利用等腰三角形的性質和相似三角形的判定及性質得出PG的長度,然后利用勾股定理求出DG的長度,最后利用即可求解.

1)∵四邊形ABCD是矩形,

由折疊的性質可知, ,

,

,則 ,

,

解得 ,

;

2)證明:,

,

,

,

,

∴四邊形CDFG是平行四邊形.

∴四邊形CDFG是菱形;

3)存在,理由如下:

①若,

∵四邊形CDFG是菱形,

,

,

,

,

,

,

,

;

②若

過點PCG于點H,

,

,

∵四邊形CDFG是菱形,

,

,

,

,

,

綜上所述,DP的值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+3x+ca0)與x軸交于點A和點B(點A在原點的左側,點B在原點的右側),與y軸交于點COB=OC=4
1)求該拋物線的函數(shù)解析式.
2)如圖1,連接BC,點D是直線BC上方拋物線上的點,連接ODCDODBC于點F,當SCOFSCDF=43時,求點D的坐標.
3)如圖2,點E的坐標為(0,-2),點P是拋物線上的點,連接EB,PB,PE形成的△PBE中,是否存在點P,使∠PBE或∠PEB等于2OBE?若存在,請直接寫出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學活動小組實地測量某條河流兩岸互相平行的一段東西走向的河的寬度.在河的北岸邊點A處,測得河的南岸邊點B處在其南偏東45°方向,然后向北走40米到達點C處,測得點B在點C的南偏東27°方向,求這段河的寬度.(結果精確到1米.參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形AOCB的兩邊OAOC分別在x軸和y軸上,且OA2,OC1.在第二象限內,將矩形AOCB以原點O為位似中心放大為原來的倍,得到矩形A1OC1B1,再將矩形A1OC1B1以原點O為位似中心放大倍,得到矩形A2OC2B2,以此類推,得到的矩形A2020OC2020B2020的對角線交點的縱坐標為______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=10BC=15,tanA=PAD邊上任意一點,連結PB,將PB繞點P逆時針旋轉90°得到線段PQ.若點Q恰好落在平行四邊形ABCD的邊所在的直線上,則PB旋轉到PQ所掃過的面積____(結果保留π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為改善辦學條件,計劃采購A、B兩種型號的空調,已知采購3A型空調和2B型空調,需費用39000元;4A型空調比5B型空調的費用多6000元.

(1)求A型空調和B型空調每臺各需多少元;

(2)若學校計劃采購A、B兩種型號空調共30臺,且A型空調的臺數(shù)不少于B型空調的一半,兩種型號空調的采購總費用不超過217000元,該校共有哪幾種采購方案?

(3)在(2)的條件下,采用哪一種采購方案可使總費用最低,最低費用是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】市某中學開展以三創(chuàng)一辦為中心,以校園文明為主題的手抄報比賽.同學們積極參與,參賽同學每人交了一份得意作品,所有參賽作品均獲獎,獎項分為一等獎、二等獎、三等獎和優(yōu)秀獎,將獲獎結果繪制成如下兩幅統(tǒng)計圖.請你根據(jù)圖中所給信息解答下列問題:

(1)一等獎所占的百分比是__________.

(2)在此次比賽中,一共收到多少份參賽作品?請將條形統(tǒng)計圖補充完整.

(3)各獎項獲獎學生分別有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東65°方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,則這時海輪所在的B處距離燈塔P的距離是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD,AB=6,DAB=60°,AE分別交BC、BD于點E、F,CE=2,連接CF.以下結論:①∠BAF=BCF; ②點EAB的距離是2; SCDF:SBEF=9:4; tanDCF=3/7. 其中正確的有()

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習冊答案