【題目】如圖,∠AOC=∠BOC,點P在OC上,PD⊥OA于點D,PE⊥OB于點E.若OD=8,OP=10,則PE的長為( 。
A.5
B.6
C.7
D.8

【答案】B
【解析】解:∵PD⊥OA, ∴∠PDO=90°,
∵OD=8,OP=10,
∴PD= =6,
∵∠AOC=∠BOC,點P在OC上,PD⊥OA,PE⊥OB,
∴PE=PD=6.
故選B.
【考點精析】根據(jù)題目的已知條件,利用角平分線的性質定理和勾股定理的概念的相關知識可以得到問題的答案,需要掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為支援雅安災區(qū),某學校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學習用品共1000件,已知A型學習用品的單價為20元,B型學習用品的單價為30元.

(1)若購買這批學習用品用了26000元,則購買A,B兩種學習用品各多少件?

(2)若購買這批學習用品的錢不超過28000元,則最多購買B型學習用品多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1,∠2互為補角,且∠3=B,

(1)求證:∠AFE=ACB

(2)CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,PAD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應點為點E),PECD相交于點O,且OE=OD.

(1)求證:PE=DH;

(2)若AB=10,BC=8,求DP的長.

【答案】1見解析;2

【解析】試題分析:(1) 先證明DOP≌△EOH再利用等量代換得到PE=DH.

(2) DP=x, RtBCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.

試題解析:

1)解:證明:OD=OE,D=∠E=90°DOP=∠EOH,

∴△DOP≌△EOH

OP=OH,

PO+OE=OH+OD

PE=DH.

2)解:設DP=x,則EH=x,BH=10﹣x,

CH=CDDH=CDPE=10﹣8﹣x=2+x,

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2,

x=,

DP=

型】解答
束】
25

【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數(shù)量是用75元購進B種套裝數(shù)量的2倍.

(1)求A,B兩種品牌套裝每套進價分別為多少元?

(2)若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數(shù)量比購進A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠BAC的平分線與BC的垂直平分線相交于點D,DEAB,DFAC,垂足分別為E,F(xiàn),AB=6,AC=3,則BE=( )

A. 6 B. 3 C. 2 D. 1.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知EFG≌△NMH, FM是對應角.

1)寫出相等的線段與相等的角;

2)若EF=2.1cmFH=1.1cm,HM=3.3cm,求MNHG的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是直線AB上一點,OC是任意一條射線,OD,OE分別是∠AOC和∠BOC的平分線,

(1)圖中∠BOD的補角是_______________;∠BOE的余角是____________________.

(2)如果∠BOE=∠AOD, 求∠BOE的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=3x的圖象與反比例函數(shù)y= 的圖象交于點A(1,m)和點B.
(1)求m的值和反比例函數(shù)的解析式.
(2)觀察圖象,直接寫出使正比例函數(shù)的值大于反比例函數(shù)的值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組在本校九年級學生中以“你最喜歡的一項體育運動”為主題進行了抽樣調查,并將調查結果繪制成如圖圖表:

項目

籃球

乒乓球

羽毛球

跳繩

其他

人數(shù)

a

12

10

5

8

請根據(jù)圖表中的信息完成下列各題:

(1)本次共調查學生名;
(2)a= , 表格中五個數(shù)據(jù)的中位數(shù)是;
(3)在扇形圖中,“跳繩”對應的扇形圓心角是
(4)如果該年級有450名學生,那么據(jù)此估計大約有人最喜歡“乒乓球”.

查看答案和解析>>

同步練習冊答案