【題目】如圖1,以直角三角形的各邊邊邊分別向外作正三角形,再把較小的兩張正三角形紙片按圖2的方式放置在最大正三角形內(nèi).若知道圖中陰影部分的面積,則一定能求出( )
A.直角三角形的面積B.較小兩個正三角形重疊部分的面積
C.最大正三角形的面積D.最大正三角形與直角三角形的面積差
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A、點B、點C均落在格點上.
(I)計算△ABC的邊AC的長為_____.
(II)點P、Q分別為邊AB、AC上的動點,連接PQ、QB.當PQ+QB取得最小值時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點P、Q的位置是如何找到的_____(不要求證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習等邊三角形時發(fā)現(xiàn)了直角三角形的一個性質(zhì):直角三角形中,角所對的直角邊等于斜邊的一半。小明同學對以上結(jié)論作了進一步探究.如圖1,在中,,則:.
探究結(jié)論:(1)如圖1,是邊上的中線,易得結(jié)論:為________三角形.
(2)如圖2,在中,是邊上的中線,點是邊上任意一點,連接,在邊上方作等邊,連接.試探究線段與之間的數(shù)量關(guān)系,寫出你的猜想加以證明.
拓展應(yīng)用:如圖3,在平面直角坐標系中,點的坐標為,點是軸正半軸上的一動點,以為邊作等邊,當點在第一象內(nèi),且時,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線的解析式;
(2)當點P運動到什么位置時,△PAB的面積有最大值?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市文化宮學習十九大有關(guān)優(yōu)先發(fā)展教育的精神,舉辦了為某貧困山區(qū)小學捐贈書包活動.首次用2000元在商店購進一批學生書包,活動進行后發(fā)現(xiàn)書包數(shù)量不夠,又購進第二批同樣的書包,所購數(shù)量是第一批數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元.
(1)求文化官第一批購進書包的單價是多少?
(2)商店兩批書包每個的進價分別是68元和70元,這兩批書包全部售給文化宮后,商店共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個交點坐標為,拋物線的對稱軸是下列結(jié)論中:
;;方程有兩個不相等的實數(shù)根;拋物線與x軸的另一個交點坐標為;若點在該拋物線上,則.
其中正確的有
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣(x﹣a)(x﹣b),其中a<b,m、n(m<n)是方程1﹣(x﹣a)(x﹣b)=0的兩個根,則實數(shù)a、b、m、n的大小關(guān)系是( 。
A. a<m<n<b B. m<a<b<n C. a<m<b<n D. m<a<n<b
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是“求作∠AOB的角平分線”的尺規(guī)作圖過程.
已知:如圖,鈍角∠AOB.求作:∠AOB的角平分線.
作法:
①在OA和OB上,分別截取OD、OE,使OD=OE;
②分別以D、E為圓心,大于的長為半徑作弧,在∠AOB內(nèi),兩弧交于點C;
③作射線OC.
所以射線OC就是所求作的∠AOB的角平分線.
在該作圖中蘊含著幾何的證明過程:
由①可得:OD=OE
由②可得:_________________
由③可知:OC=OC
∴______≌_________(依據(jù):________________________)
∴可得∠COD=∠COE(全等三角形對應(yīng)角相等)
即OC就是所求作的∠AOB的角平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個交點坐標為,拋物線的對稱軸是下列結(jié)論中:
;;方程有兩個不相等的實數(shù)根;拋物線與x軸的另一個交點坐標為;若點在該拋物線上,則.
其中正確的有
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com