精英家教網 > 初中數學 > 題目詳情

【題目】已知反比例函數的圖象經過點A(26).

(1)求這個反比例函數的解析式;

(2)這個函數的圖象位于哪些象限?yx的增大如何變化?

(3)B(34),C(52),D(,)是否在這個函數圖象上?為什么?

【答案】(1);(2)這個函數的圖象位于第一、三象限,在每一個象限內,yx的增大而減;(3)BD在函數的圖象上,點C不在這個函數圖象上.

【解析】

1)利用待定系數法求函數解析式;

2)根據反比例函數的性質求解;

3)根據反比例函數圖象上點的坐標特征進行判斷.

(1)設這個反比例函數的解析式為,

因為在其圖象上,所以點的坐標滿足

即,,解得,

所以,這個反比例函數解析式為

(2)這個函數的圖象位于第一、三象限,

在每一個象限內,的增大而減;

(3)因為點,滿足,所以點,在函數的圖象上,點的坐標不滿足,所以點不在這個函數圖象上.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P,給出如下定義:記點Px軸的距離為,到y軸的距離為,若,則稱為點P的最大距離;若,則稱為點P的最大距離.

例如:點P,)到到x軸的距離為4,到y軸的距離為3,因為3 < 4,所以點P的最大距離為.

(1)①點A(2,)的最大距離為 ;

②若點B,)的最大距離為,則的值為

(2)若點C在直線上,且點C的最大距離為,求點C的坐標;

(3)若⊙O存在M,使點M的最大距離為,直接寫出⊙O的半徑r的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點FDE的延長線上,∠BFE=90°,連接AF、CF,CFAB交于G.有以下結論:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正確的個數是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC是邊長為12的正三角形,AD是邊BC上的高線,CF是外角ACE的平分線,點P是邊BC上的一個動點(與點B,C不重合),∠APQ =60°,射線PQ分別與邊AC,射線CF交于點N,Q

(1)求證:△ABP∽△PCN

(2)不管點P運動到何處,在不添輔助線的情況下,除第(1)小題中的一對相似三角形外,請寫出圖中其它的所有相似三角形;

(3)當點PBD的中點運動到DC的中點時,點N都隨著點P的運動而運動.在此過程中,試探究:能否求出點N運動的路徑長?若能,請求出這個長度;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某小區(qū)改善生態(tài)環(huán)境,實行生活垃圾的分類處理,將生活垃圾分成三類:廚房垃圾、可回收垃圾和其他垃圾,分別記為m,n,p,并且設置了相應的垃圾箱,“廚房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分別記為A,B,C.

(1)若將三類垃圾隨機投入三類垃圾箱,請用畫樹狀圖的方法求垃圾投放正確的概率;

(2)為了了解居民生活垃圾分類投放的情況,現(xiàn)隨機抽取了小區(qū)三類垃圾箱中總共1 000噸生活垃圾,數據統(tǒng)計如下(單位:噸):

A

B

C

m

400

100

100

n

30

240

30

p

20

20

60

請根據以上信息,試估計“廚房垃圾”投放正確的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P在直線y=x-1上,設過點P的直線交拋物線y=x2A(a,a2)B(b,b2)兩點,當滿足PA=PB時,稱點P優(yōu)點”.

(1)a+b=0時,求優(yōu)點”P的橫坐標;

(2)優(yōu)點”P的橫坐標為3,求式子18a-9b的值;

(3)小安演算發(fā)現(xiàn):直線y=x-1上的所有點都是優(yōu)點,請判斷小安發(fā)現(xiàn)是否正確?如果正確,說明理由;如果不正確,舉出反例.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖有兩個可以自由轉動的均勻轉盤,A,B兩個轉盤被分成幾個面積相等的扇形,并且在每個扇形內標上數字,轉動轉盤后,如果指針指在分割線上,那么重轉一次,直到指針指向某一個扇形內為止.

1)只轉動A轉盤,轉盤停止后指針指向數字2的概率.

2)如果同時轉動AB兩個轉盤,轉盤停止后,將兩個指針所指的數字相加,那么和是偶數的概率是多少,用樹形圖或表格說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了解九年級男同學的體育考試準備情況.隨機抽取部分男同學進行了1000米跑測試按照成績分為優(yōu)秀、良好、合格與不合格四個等級.學校繪制了如下不完整的統(tǒng)計圖,根據圖中信息解答下列問題:

1)扇形統(tǒng)計圖中良好所對應的圓心角度數是   ;請補全條形統(tǒng)計圖;

2)該校九年級有600名男生,請估計成績未達到良好的有多少名?

3)某班甲、乙兩位成績獲優(yōu)秀的同學被選中參加即將舉行的學校運動會1000米比賽,預賽分為A,B,CD四組進行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:ADABC的高,且BDCD

(1)如圖1,求證:∠BADCAD

(2)如圖2,點EAD上,連接BE,將ABE沿BE折疊得到ABEABAC相交于點F,若BEBC,求∠BFC的大;

(3)如圖3,在(2)的條件下,連接EF,過點CCGEF,交EF的延長線于點G,若BF=10,EG=6,求線段CF的長.

查看答案和解析>>

同步練習冊答案