【題目】點(diǎn)DABC內(nèi),點(diǎn)E為邊BC上一點(diǎn),連接DE、CD

1)如圖1,連接AE,若AED=∠A+∠D,求證:AB//CD

2)在(1)的結(jié)論下,過(guò)點(diǎn)A的直線(xiàn)MA//ED

如圖2,當(dāng)點(diǎn)E在線(xiàn)段BC上時(shí),猜想并驗(yàn)證MABCDE的數(shù)量關(guān)系;

如圖3,當(dāng)點(diǎn)E在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),猜想并驗(yàn)證MABCDE的數(shù)量關(guān)系.

【答案】1)證明見(jiàn)解析;(2)①∠MAB=CDE;②∠CDE+MAB=180°.

【解析】

1)過(guò)EEFAB,則∠A=AEF,由∠D=AED﹣∠A,∠DEF=AED﹣∠AEF,即可得到∠D=DEF,進(jìn)而得出EFCD,即可得到ABCD

2)①根據(jù)∠AED=BAE+D,∠MAE=BAE+BAE,即可得到∠D=BAM,即可得到結(jié)論;

②延長(zhǎng)MABCF,依據(jù)平行線(xiàn)的性質(zhì)以及三角形內(nèi)角和定理,即可得到∠D=BAF,再根據(jù)鄰補(bǔ)角互補(bǔ)即可得到∠CDE+MAB=180°.

1)如圖1,過(guò)EEFAB,則∠A=AEF

∵∠AED=A+D,∴∠D=AED﹣∠A

又∵∠DEF=AED﹣∠AEF,∴∠D=DEF,∴EFCD,∴ABCD;

2)①∵AMDE,∴∠MAE=AED

∵∠AED=BAE+D,∠MAE=BAE+BAE,∴∠D=BAM,即∠MAB=CDE;

②如圖3,延長(zhǎng)MABCF

MAED,∴∠DEC=MFB

ABCD,∴∠B=DCE,∴∠D=BAF

又∵∠BAF+MAB=180°,∴∠CDE+MAB=180°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式中:

3x=﹣4系數(shù)化為1x=﹣;

52x移項(xiàng)得x52;

去分母得22x1)=1+3x3);

22x1)﹣3x3)=1去括號(hào)得4x23x91

其中正確的個(gè)數(shù)有( 。

A. 0個(gè) B. 1個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】歷史上對(duì)勾股定理的一種證法采用了如圖所示圖形,其中兩個(gè)全等的直角三角形邊AE,EB在一條直線(xiàn)上.證明中用到的面積相等關(guān)系是 ( )

A. SEDA=SCEB

B. SEDA +SCEB=SCDB

C. S四邊形CDAE= S四邊形CDEB

D. SEDA+SCDE+SCEB= S四邊形ABCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)ly =x,過(guò)點(diǎn)A0,1)作y軸的垂線(xiàn)交直線(xiàn)于點(diǎn)B,過(guò)點(diǎn)B作直線(xiàn)l的垂線(xiàn)交y軸于點(diǎn)A1;過(guò)點(diǎn)A1y軸的垂線(xiàn)交直線(xiàn)l于點(diǎn)B1,過(guò)點(diǎn)B1作直線(xiàn)l的垂線(xiàn)交y軸于點(diǎn)A2;按此作法繼續(xù)下去,則點(diǎn)A2019的坐標(biāo)為( )

A. 0,42019 B. 042018 C. 0,32019 D. 032018

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過(guò)1千克的,按每千克22元收費(fèi);超過(guò)1千克,超過(guò)的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.

(1)請(qǐng)分別寫(xiě)出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;

(2)小明選擇哪家快遞公司更省錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,且OB=OD.點(diǎn)E在線(xiàn)段OA上,連結(jié)BE,DE.給出下列條件:①OC=OE;②AB=AD;③BC⊥CD;④∠CBD=∠EBD.請(qǐng)你從中選擇兩個(gè)條件,使四邊形BCDE是菱形,并給予證明.你選擇的條件是:(只填寫(xiě)序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行四邊形ABCD中,對(duì)角線(xiàn)ACBD交于點(diǎn)O(如圖),則圖中全等三角形的對(duì)數(shù)為( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作與探究

綜合實(shí)踐課,老師把一個(gè)足夠大的等腰直角三角尺AMN靠在一個(gè)正方形紙片ABCD的一側(cè),使邊AM與AD在同
一直線(xiàn)上(如圖1),其中∠AMN=90°,AM=MN.
(1)猜想發(fā)現(xiàn)
老師將三角尺AMN繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α.如圖2,當(dāng)0<α<45°時(shí),邊AM,AN分別與直線(xiàn)BC,CD交于點(diǎn)E,F(xiàn),連結(jié)EF.小明同學(xué)探究發(fā)現(xiàn),線(xiàn)段EF,BE,DF滿(mǎn)足EF=BE﹣DF;如圖3,當(dāng)45°<α<90°時(shí),其它條件不變.
①填空:∠DAF+∠BAE=度;
②猜想:線(xiàn)段EF,BE,DF三者之間的數(shù)量關(guān)系是:
(2)證明你的猜想;
(3)拓展探究
在45°<α<90°的情形下,連結(jié)BD,分別交AM,AN于點(diǎn)G,H,如圖4連結(jié)EH,試證明:EH⊥AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知正方形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)OEAC上一點(diǎn),連接EB,過(guò)點(diǎn)AAM⊥BE,垂足為M,AMBD于點(diǎn)F

(1)求證:OEOF;

(2)如圖(2),若點(diǎn)EAC的延長(zhǎng)線(xiàn)上,AM⊥BE于點(diǎn)M,交DB的延長(zhǎng)線(xiàn)于點(diǎn)F,其他條件不變,則結(jié)論“OEOF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案