【題目】已知,直線AB與直線CD相交于O,OB平分∠DOF.
(1)如圖,若∠BOF=40°,求∠AOC的度數(shù);
(2)作射線OE,使得∠COE=60°,若∠BOF=x°(),求∠AOE的度數(shù)(用含x的代數(shù)式表示).
【答案】(1);(2)當(dāng)時(shí),為;當(dāng)時(shí),為
【解析】
(1)根據(jù) OB平分∠DOF,可知∠BOD=∠BOF=40°,可求∠AOC的度數(shù);
(2)①時(shí)分成兩種情況:②時(shí)也分成兩種情況.畫出圖形可求解.
解:(1)如圖,
∵OB平分∠DOF
∴∠BOD=∠BOF=40°
又∵∠AOC與∠BOD互為對(duì)頂角
∴∠AOC=∠BOD=40°
∴∠AOC=40°
(2)①時(shí)分成兩種情況:
如上圖情況:∠AOE=∠AOC+∠COE=x°+60°
如上圖情況:∠AOE=∠COE-∠AOC=60°-x°
②時(shí)也分成兩種情況:
如上圖情況:∠AOE=∠AOC-∠COE=x°-60°
如上圖情況:∠AOE=∠AOC+∠COE=x°+60°
綜上所述:當(dāng)時(shí),∠AOE為60°-x°或60°+x°
當(dāng)時(shí),∠AOE為x°-60°或60°+x°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為射線AB上一點(diǎn),AB=30,AC比BC的多5,P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā).分別以2單位/秒和1單位/秒的速度在射線AB上沿AB方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,M為BP的中點(diǎn),N為QM的中點(diǎn),以下結(jié)論:①BC=2AC;②AB=4NQ;③當(dāng)PB=BQ時(shí),t=12,其中正確結(jié)論的個(gè)數(shù)是( 。
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校食堂廚房的桌子上整齊地?cái)[放著若干相同規(guī)格的碟子,碟子的個(gè)數(shù)與碟子的高度的關(guān)系如下表:
(1)當(dāng)桌子上放有個(gè)碟子時(shí),請(qǐng)寫出此時(shí)碟子的高度(用含的式子表示);
(2)分別從三個(gè)方向上看,其三視圖如下圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課上,某活動(dòng)小組用棋子擺出了下列圖形:
……
第1個(gè)圖形 第2個(gè)圖形 第3個(gè)圖形 第4個(gè)圖形
(1)探索新知:
①第個(gè)圖形需要_________枚棋子;②第個(gè)圖形需要__________枚棋子.
(2)思維拓展:
小明說:“我要用枚棋子擺出一個(gè)符合以上規(guī)律的圖形”,你認(rèn)為小明能擺出嗎?如果能擺出,請(qǐng)問擺出的是第幾個(gè)圖形;如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在每個(gè)邊長(zhǎng)都為1的小正方形組成的網(wǎng)格中,點(diǎn)A、P分別為小正方形的中點(diǎn),B為格點(diǎn).
(I)線段AB的長(zhǎng)度等于_____;
(Ⅱ)在線段AB上存在一個(gè)點(diǎn)Q,使得點(diǎn)Q滿足∠PQA=45°,請(qǐng)你借助給定的網(wǎng)格,并利用不帶刻度的直尺作出∠PQA,并簡(jiǎn)要說明你是怎么找到點(diǎn)Q的:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為直線上一點(diǎn),與互補(bǔ),、分別是、的平分線,.
(1)與相等嗎?請(qǐng)說明理由;
(2)求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長(zhǎng)為a的等邊三角形,記為第1個(gè)等邊三角形,取其各邊的三等分點(diǎn),順次連接得到一個(gè)正六邊形,記為第1個(gè)正六邊形,取這個(gè)正六邊形不相鄰的三邊中點(diǎn),順次連接又得到一個(gè)等邊三角形,記為第2個(gè)等邊三角形,取其各邊的三等分點(diǎn),順次連接又得到一個(gè)正六邊形,記為第2個(gè)正六邊形(如圖),…,按此方式依次操作,則第6個(gè)正六邊形的邊長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校食堂廚房的桌子上整齊地?cái)[放著若干相同規(guī)格的碟子,碟子的個(gè)數(shù)與碟子的高度的關(guān)系如下表:
碟子的個(gè)數(shù) | 碟子的高度(單位:cm) |
1 | 2 |
2 | 2+1.5 |
3 | 2+3 |
4 | 2+4.5 |
… | … |
(1)當(dāng)桌子上放有x(個(gè))碟子時(shí),請(qǐng)寫出此時(shí)碟子的高度(用含x的式子表示);
(2)分別從三個(gè)方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=BC=5,AC=6,△ABC沿BC方向向右平移得△DCE,A、C對(duì)應(yīng)點(diǎn)分別是D、E.AC與BD相交于點(diǎn)O.
(1)將射線BD繞B點(diǎn)順時(shí)針旋轉(zhuǎn),且與DC,DE分別相交于F,G,CH∥BG交DE于H,當(dāng)DF=CF時(shí),求DG的長(zhǎng);
(2)如圖2,將直線BD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),與線段AD,BC分別相交于點(diǎn)Q,P.設(shè)OQ=x,四邊形ABPQ的周長(zhǎng)為y,求y與x之間的函數(shù)關(guān)系式,并求y的最小值.
(3)在(2)中PQ的旋轉(zhuǎn)過程中,△AOQ是否構(gòu)成等腰三角形?若能構(gòu)成等腰三角形,求出此時(shí)PQ的長(zhǎng)?若不能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com