【題目】如圖,在中,,是過(guò)點(diǎn)的直線,于,于點(diǎn);
(1)若、在的同側(cè)(如圖所示)且.求證:;
(2)若、在的兩側(cè)(如圖所示),且,其他條件不變,與仍垂直嗎?若是請(qǐng)給出證明;若不是,請(qǐng)說(shuō)明理由.
【答案】(1)見解析;(2)見解析.
【解析】
(1)由已知條件,證明ABD≌△CAE,再利用角與角之間的關(guān)系求證∠BAD+∠CAE=90°,即可證明AB⊥AC;
(2)同(1),先證ABD≌△CAE,再利用角與角之間的關(guān)系求證∠BAD+∠CAE=90°,即可證明AB⊥AC.
(1)證明:∵BD⊥DE,CE⊥DE,
∴∠ADB=∠ABC=∠90,
在Rt△ABD和Rt△CAE中,∵,
∴Rt△ABD≌Rt△CAE.
∴∠DAB=∠ECA,∠DBA=∠ACE.
∵∠DAB+∠DBA=90,∠EAC+∠ACE=90,
∴∠BAD+∠CAE=90.
∠BAC=180-(∠BAD+∠CAE)=90.
∴AB⊥AC.
(2)AB⊥AC.理由如下:
同(1)一樣可證得Rt△ABD=Rt△ACE.
∴∠DAB=∠ECA,∠DBA=∠EAC,
∵∠CAE+∠ECA=90°,
∴∠CAE+∠BAD=90,即∠BAC=90°,
∴AB⊥AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=120°,在BC上取一點(diǎn)O,以O(shè)為圓心、OB為半徑作圓,且⊙O過(guò)A點(diǎn). 如圖①,若⊙O的半徑為5,求線段OC的長(zhǎng);
如圖②,過(guò)點(diǎn)A作AD∥BC交⊙O于點(diǎn)D,連接BD,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為宣傳節(jié)約用水,小明隨機(jī)調(diào)查了某小區(qū)部分家庭5月份的用水情況,并將收集的數(shù)據(jù)整理成如圖所示的統(tǒng)計(jì)圖.
(1)小明一共調(diào)查了多少戶家庭?
(2)求所調(diào)查家庭5月份用水量的眾數(shù)、平均數(shù).
(3)若該小區(qū)有400戶居民,請(qǐng)你估計(jì)這個(gè)小區(qū)5月份的用水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在△ABC中,AC=BC,D是AB上的一點(diǎn),AE⊥CD于點(diǎn)E,BF⊥CD于點(diǎn)F,若CE=BF,AE=EF+BF.試判斷AC與BC的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲同學(xué)手中藏有三張分別標(biāo)有數(shù)字 、 、1的卡片,乙同學(xué)手中藏有三張分別標(biāo)有數(shù)字1、3、2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請(qǐng)你用樹形圖或列表法列出所有可能的結(jié)果;
(2)現(xiàn)制定一個(gè)游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個(gè)不相等的實(shí)數(shù)根,則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則公平嗎?請(qǐng)用概率知識(shí)解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)七、八年級(jí)各選派10名選手參加學(xué)校舉辦的“愛我荊門”知識(shí)競(jìng)賽,計(jì)分采用10分制,選手得分均為整數(shù),成績(jī)達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀.這次競(jìng)賽后,七、八年級(jí)兩支代表隊(duì)選手成績(jī)分布的條形統(tǒng)計(jì)圖和成績(jī)統(tǒng)計(jì)分析表如下,其中七年級(jí)代表隊(duì)得6分、10分的選手人數(shù)分別為a,b.
隊(duì)別 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
七年級(jí) | 6.7 | m | 3.41 | 90% | n |
八年級(jí) | 7.1 | 7.5 | 1.69 | 80% | 10% |
(1)請(qǐng)依據(jù)圖表中的數(shù)據(jù),求a,b的值;
(2)直接寫出表中的m,n的值;
(3)有人說(shuō)七年級(jí)的合格率、優(yōu)秀率均高于八年級(jí),所以七年級(jí)隊(duì)成績(jī)比八年級(jí)隊(duì)好,但也有人說(shuō)八年級(jí)隊(duì)成績(jī)比七年級(jí)隊(duì)好.請(qǐng)你給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=4,BC=2,點(diǎn)P、E、F分別為邊BC、AB、AC上的任意點(diǎn),則PE+PF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)三角形能被一條線段分割成兩個(gè)等腰三角形,那么稱這條線段為這個(gè)三角形的特異線,稱這個(gè)三角形為特異三角形.
(1)如圖1,△ABC中,∠B=2∠C,線段AC的垂直平分線交AC于點(diǎn)D,交BC于點(diǎn)E.求證:AE是△ABC的一條特異線.
(2)如圖2,已知△ABC是特異三角形,且∠A=30°,∠B為鈍角,求出所有可能的∠B的度數(shù).
(3)如圖3,△ABC是一個(gè)腰長(zhǎng)為2的等腰銳角三角形,且它是特異三角形,若它的頂角度數(shù)為整數(shù),請(qǐng)求出其特異線的長(zhǎng)度;若它的頂角度數(shù)不是整數(shù),請(qǐng)直接寫出頂角度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com