【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求的值.
【答案】(1)(2)見解析;(3)
【解析】試題分析:(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可證得△ADC∽△ACB,然后由相似三角形的對應(yīng)邊成比例,證得AC2=ABAD;
(2)由E為AB的中點,根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半,即可證得CE=AB=AE,繼而可證得∠DAC=∠ECA,得到CE∥AD;
(3)易證得△AFD∽△CFE,然后由相似三角形的對應(yīng)邊成比例,即可得到結(jié)論.
試題解析:(1)證明:∵AC平分∠DAB,∴∠DAC=∠CAB.∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=ABAD;
(2)證明:∵E為AB的中點,∴CE=AB=AE,∴∠EAC=∠ECA.∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥A D;
(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF.∵CE= AB,∴CE=×6=3.∵AD=4,∴,∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)語句畫圖,并回答問題,如圖,∠AOB內(nèi)有一點P.
(1)過點P畫PC∥OB交OA于點C,畫PD∥OA交OB于點D.
(2)寫出圖中與∠CPD互補的角 .(寫兩個即可)
(3)寫出圖中∠O相等的角 .(寫兩個即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,點P是AB上一動點.若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,弦AD⊥BC垂足為H,∠ABC=2∠CAD.
(1)如圖1,求證:AB=BC;
(2)如圖2,過點B作BM⊥CD垂足為M,BM交⊙O于E,連接AE、HM,求證:AE∥HM;
(3)如圖3,在(2)的條件下,連接BD交AE于N,AE與BC交于點F,若NH=2,AD=11,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以點P(-1,0)為圓心的圓,交x軸于B、C兩點(B在C的左側(cè)),交y軸于A、D兩點(A在D的下方),AD=,將△ABC繞點P旋轉(zhuǎn)180°,得到△MCB.
(1)求B、C兩點的坐標(biāo);
(2)請在圖中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點M的坐標(biāo);
(3)動直線l從與BM重合的位置開始繞點B順時針旋轉(zhuǎn),到與BC重合時停止,設(shè)直線l與CM交點為E,點Q為BE的中點,過點E作EG⊥BC于G,連接MQ、QG.請問在旋轉(zhuǎn)過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點與原點重合,點在軸的正半軸上,點在函數(shù)的圖象上,點的坐標(biāo)為.
(1)求的值.
(2)將點沿軸正方向平移得到點,當(dāng)點在函數(shù)的圖象上時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知正方形ABCD的對角線AC、BD相交于點O,E是AC上一點,連接EB,過點A作AM⊥BE,垂足為M,AM交BD于點F.
(1)求證:OE=OF;
(2)如圖(2),若點E在AC的延長線上,AM⊥BE于點M,交DB的延長線于點F,其他條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com