【題目】某校為了解全校學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生從中只選一類最喜愛的電視節(jié)目,以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.
類別 | A | B | C | D | E |
節(jié)目類型 | 新聞 | 體育 | 動(dòng)畫 | 娛樂 | 戲曲 |
人數(shù) | 12 | 30 | m | 54 | 9 |
請(qǐng)你根據(jù)以上的信息,回答下列問題:
(1)被調(diào)查的學(xué)生中,最喜愛體育節(jié)目的有 人,這些學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %.
(2)被調(diào)查學(xué)生的總數(shù)為 人,統(tǒng)計(jì)表中m的值為 ,統(tǒng)計(jì)圖中n的值為 .
(3)在統(tǒng)計(jì)圖中,E類所對(duì)應(yīng)扇形圓心角的度數(shù)為 .
(4)該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校最喜愛新聞節(jié)目的學(xué)生數(shù).
【答案】(1)30,20;(2)150,45,36;(3)21.6°;(4)160
【解析】
(1)觀察圖表體育類型即可解決問題;
(2)根據(jù)“總數(shù)=B類型的人數(shù)÷B所占百分比”可得總數(shù);用總數(shù)減去其他類型的人數(shù),可得m的值;根據(jù)百分比=所占人數(shù)/總?cè)藬?shù)可得n的值;
(3)根據(jù)圓心角度數(shù)=360°×所占百分比,計(jì)算即可;
(4)用學(xué)生數(shù)乘以最喜愛新聞節(jié)目所占百分比可估計(jì)最喜愛新聞節(jié)目的學(xué)生數(shù).
(1)最喜愛體育節(jié)目的有 30人,這些學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 20%.
故答案為30,20;
(2)總?cè)藬?shù)=30÷20%=150人,
m=150﹣12﹣30﹣54﹣9=45,
n%=×100%=36%,即n=36,
故答案為150,45,36.
(3)E類所對(duì)應(yīng)扇形的圓心角的度數(shù)=360°×=21.6°,
故答案為21.6°;
(4)估計(jì)該校最喜愛新聞節(jié)目的學(xué)生數(shù)為2000×=160人,
答:估計(jì)該校最喜愛新聞節(jié)目的學(xué)生數(shù)為160人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F,E為頂點(diǎn)的三角形也與△ABE相似?若存在,請(qǐng)求出x的值;若不存在,請(qǐng)說明理由;
(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個(gè)公共點(diǎn)時(shí),請(qǐng)直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)E、F在邊BC上,點(diǎn)D在邊AC上,連接ED、DF,=m,∠A=∠EDF=120°
(1)如圖1,點(diǎn)E、B重合,m=1時(shí)
①若BD平分∠ABC,求證:CD2=CFCB;
②若,則= ;
(2)如圖2,點(diǎn)E、B不重合.若BE=CF,=m,,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綿陽(yáng)中學(xué)為了進(jìn)一步改善辦學(xué)條件,決定計(jì)劃拆除一部分舊校舍,建造新校舍.拆除舊校舍每平方米需80元,建造新校舍每平方米需要800元,計(jì)劃在年內(nèi)拆除舊校舍與建造新校舍共9 000平方米,在實(shí)施中為擴(kuò)大綠化面積,新建校舍只完成了計(jì)劃的90%而拆除舊校舍則超過了計(jì)劃的10%,結(jié)果恰好完成了原計(jì)劃的拆、建總面積.
(1)求原計(jì)劃拆、建面積各是多少平方米?
(2)若綠化1平方米需要200元,那么把在實(shí)際的拆、建工程中節(jié)余的資金全部用來綠化,可綠化多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線上有A,B兩個(gè)觀測(cè)站,A在B的正東方向,有一艘小船停在點(diǎn)P處,從A測(cè)得小船在北偏西60°的方向,從B測(cè)得小船在北偏東45°的方向,BP=6km.
(1)求A、B兩觀測(cè)站之間的距離;
(2)小船從點(diǎn)P處沿射線AP的方向前行,求觀測(cè)站B與小船的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)是軸上的一點(diǎn),且以為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo);
(3)如圖2,軸瑋拋物線相交于點(diǎn),點(diǎn)是直線下方拋物線上的動(dòng)點(diǎn),過點(diǎn)且與軸平行的直線與,分別交于點(diǎn),,試探究當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形的面積最大,求點(diǎn)的坐標(biāo)及最大面積;
(4)若點(diǎn)為拋物線的頂點(diǎn),點(diǎn)是該拋物線上的一點(diǎn),在軸,軸上分別找點(diǎn),,使四邊形的周長(zhǎng)最小,求出點(diǎn),的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(4,﹣2)、B(﹣2,n)兩點(diǎn),與x軸交于點(diǎn)C.
(1)求k2,n的值;
(2)請(qǐng)直接寫出不等式k1x+b<的解集;
(3)將x軸下方的圖象沿x軸翻折,點(diǎn)A落在點(diǎn)A′處,連接A′B,A′C,求△A′BC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知三個(gè)頂點(diǎn)的坐標(biāo)分別是.
(1)請(qǐng)?jiān)趫D中,畫出繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到的,則的正切值為 .
(2)以點(diǎn)為位似中心,將縮小為原來的,得到,請(qǐng)?jiān)趫D中軸左側(cè),畫出,若點(diǎn)是上的任意一點(diǎn),則變換后的對(duì)應(yīng)點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了為期一周的“敬老愛親”社會(huì)活動(dòng),為了解情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生在這次活動(dòng)中做家務(wù)的時(shí)間,并將統(tǒng)計(jì)的時(shí)間(單位:小時(shí))分成5組,A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成兩幅不完整的統(tǒng)計(jì)圖(如圖).
請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)學(xué)生會(huì)隨機(jī)調(diào)查了 名學(xué)生;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若全校有900名學(xué)生,估計(jì)該校在這次活動(dòng)中做家務(wù)的時(shí)間不少于2.5小時(shí)的學(xué)生有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com