【題目】已知△ ABC 是等腰三角形,CA=CB,0°<∠ACB≤90°,點(diǎn) M 在邊 AC 上,點(diǎn) N在邊 BC 上(點(diǎn) M、點(diǎn) N 不與所在線段端點(diǎn)重合),BN=AM,連接 AN,BM.射線 AG∥BC,延長(zhǎng) BM 交射線 AG 于點(diǎn) D,點(diǎn) E 在直線 AN 上,且 AE=DE.
(1)如圖,當(dāng)∠ACB=90°時(shí),
①求證:△ BCM≌△ACN;
②求∠BDE 的度數(shù);
(2)當(dāng)∠ACB=ɑ ,其它條件不變時(shí),∠BDE 的度數(shù)是 (用含ɑ 的代數(shù)式表示).
(3)若△ ABC 是等邊三角形,AB=3,點(diǎn) N 是 BC 邊上的三等分點(diǎn),直線 ED 與直線 BC 交于點(diǎn) F,請(qǐng)直接寫出線段 CF 的長(zhǎng).
【答案】(1)詳見解析;90°;(2)α或180-α;(3)或.
【解析】
(1)①根據(jù)SAS證明即可;
②想辦法證明∠ADE+∠ADB=90°即可;
(2)分兩種情形討論求解即可,①如圖2中,當(dāng)點(diǎn)E在AN的延長(zhǎng)線上時(shí),②如圖3中,當(dāng)點(diǎn)E在NA的延長(zhǎng)線上時(shí);
(3)分兩種情形求解即可,①如圖4中,當(dāng)BN=BC=時(shí),作AK⊥BC于K.解直角三角形即可.②如圖5中,當(dāng)CN=BC=時(shí),作AK⊥BC于K,DH⊥BC于H.
(1)①如圖1.
∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM,即CN=CM.
∵∠ACN=∠BCM,∴△BCM≌△ACN.
②如圖1.
∵△BCM≌△ACN,∴∠MBC=∠NAC.
∵EA=ED,∴∠EAD=∠EDA.
∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD=∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°.
(2)如圖2,當(dāng)點(diǎn)E在AN的延長(zhǎng)線上時(shí).
易證:∠CBM=∠ADB=∠CAN,∠ACB=∠CAD.
∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.
如圖3,當(dāng)點(diǎn)E在NA的延長(zhǎng)線上時(shí).
易證:∠1+∠2=∠CAN+∠DAC.
∵∠2=∠ADM=∠CBD=∠CAN,∴∠1=∠CAD=∠ACB=α,∴∠BDE=180°﹣α.
綜上所述:∠BDE=α或180°﹣α.
故答案為:α或180°﹣α.
(3)如圖4,當(dāng)BN=BC=時(shí),作AK⊥BC于K,連結(jié)CD.
∵AD∥BC,∴==,∴AD=,AC=3,易證△ADC是直角三角形,則四邊形ADCK是矩形,△AKN≌△DCF,∴CF=NK=BK﹣BN=﹣=.
如圖5,當(dāng)CN=BC=時(shí),作AK⊥BC于K,DH⊥BC于H.
∵AD∥BC,∴==2,∴AD=6,易證△ACD是直角三角形,由△ACK∽△CDH,可得CH=AK=,由△AKN≌△DHF,可得KN=FH=,∴CF=CH﹣FH=4.
綜上所述:CF的長(zhǎng)為或4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=7,點(diǎn)D在邊BC上,CD=3,⊙A的半徑長(zhǎng)為3,⊙D與⊙A相交,且點(diǎn)B在⊙D外,那么⊙D的半徑長(zhǎng)r的取值范圍是( )
A.1<r<4
B.2<r<4
C.1<r<8
D.2<r<8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的直角頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3,),點(diǎn)C的坐標(biāo)為(1,0),且∠B=60°,點(diǎn)P為斜邊OB上的一個(gè)動(dòng)點(diǎn),則PA+PC的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D是△ABC的邊BC上一點(diǎn),AB=4,AD=2,∠DAC=∠B.如果△ABD的面積為15,那么△ACD的面積為( )
A.15
B.10
C.
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫弧分別交AB,AC于點(diǎn)M和N,再分別以點(diǎn)M,N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法:①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的垂直平分線上;④S△DAC:S△ABC=1:3.其中正確的是__________________.(填所有正確說(shuō)法的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一列按一定順序和規(guī)律排列的數(shù):
第一個(gè)數(shù)是 ;
第二個(gè)數(shù)是 ;
第三個(gè)數(shù)是 ;
…
對(duì)任何正整數(shù)n,第n個(gè)數(shù)與第(n+1)個(gè)數(shù)的和等于 .
(1)經(jīng)過(guò)探究,我們發(fā)現(xiàn):
設(shè)這列數(shù)的第5個(gè)數(shù)為a,那么 , , ,哪個(gè)正確?
請(qǐng)你直接寫出正確的結(jié)論;
(2)請(qǐng)你觀察第1個(gè)數(shù)、第2個(gè)數(shù)、第3個(gè)數(shù),猜想這列數(shù)的第n個(gè)數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿足“第n個(gè)數(shù)與第(n+1)個(gè)數(shù)的和等于 ”;
(3)設(shè)M表示 , , ,…, ,這2016個(gè)數(shù)的和,即 ,
求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABC的邊BC在x軸上,A,C兩點(diǎn)的坐標(biāo)分別為A(0,m),C(n,0),B(﹣5,0),且(n﹣3)2+ =0.一動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2單位長(zhǎng)度的速度沿射線BO勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.
(1)求A,C兩點(diǎn)的坐標(biāo);
(2)連接PA,若△PAB為等腰三角形,求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P在線段BO上運(yùn)動(dòng)時(shí),在y軸上是否存在點(diǎn)Q,使△POQ與△AOC全等?若存在,請(qǐng)求出t的值并直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ACB中,∠ACB=90°,D、E為斜邊AB上的兩點(diǎn),且BD=BC,AE=AC,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李從西安通過(guò)某快遞公司給在南昌的外婆寄一盒櫻桃,快遞時(shí),他了解到這個(gè)公司除收取每次6元的包裝費(fèi)外,櫻桃不超過(guò)1kg收費(fèi)22元,超過(guò)1kg,則超出部分按每千克10元加收費(fèi)用.設(shè)該公司從西安到南昌快遞櫻桃的費(fèi)用為y(元),所寄櫻桃為x(kg).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)已知小李給外婆快寄了2.5kg櫻桃,請(qǐng)你求出這次快寄的費(fèi)用是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com