【題目】已知△ ABC 是等腰三角形,CA=CB,0°<∠ACB≤90°,點(diǎn) M 在邊 AC 上,點(diǎn) N在邊 BC 上(點(diǎn) M、點(diǎn) N 不與所在線段端點(diǎn)重合),BN=AM,連接 AN,BM.射線 AG∥BC,延長(zhǎng) BM 交射線 AG 于點(diǎn) D,點(diǎn) E 在直線 AN 上,且 AE=DE.

(1)如圖,當(dāng)∠ACB=90°時(shí),

①求證:△ BCM≌△ACN;

②求∠BDE 的度數(shù);

(2)當(dāng)∠ACB=ɑ ,其它條件不變時(shí),∠BDE 的度數(shù)是 (用含ɑ 的代數(shù)式表示).

(3)若△ ABC 是等邊三角形,AB=3,點(diǎn) N BC 邊上的三等分點(diǎn),直線 ED 與直線 BC 交于點(diǎn) F,請(qǐng)直接寫出線段 CF 的長(zhǎng).

【答案】1)詳見解析;90°;2)α或180-α;(3

【解析】

1①根據(jù)SAS證明即可;

②想辦法證明∠ADE+∠ADB=90°即可

2)分兩種情形討論求解即可,①如圖2,當(dāng)點(diǎn)EAN的延長(zhǎng)線上時(shí)②如圖3,當(dāng)點(diǎn)ENA的延長(zhǎng)線上時(shí)

3)分兩種情形求解即可,①如圖4當(dāng)BN=BC=時(shí),AKBCK.解直角三角形即可.②如圖5當(dāng)CN=BC=時(shí),AKBCKDHBCH

1①如圖1

CA=CB,BN=AMCBBN=CAAM,CN=CM

∵∠ACN=BCM,∴△BCM≌△ACN

②如圖1

∵△BCM≌△ACN,∴∠MBC=NAC

EA=ED∴∠EAD=EDA

AGBC,∴∠GAC=ACB=90°,ADB=DBC,∴∠ADB=NAC∴∠ADB+∠EDA=NAC+∠EAD=ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°.

2)如圖2當(dāng)點(diǎn)EAN的延長(zhǎng)線上時(shí)

易證CBM=ADB=CAN,ACB=CAD

EA=ED,∴∠EAD=EDA∴∠CAN+∠CAD=BDE+∠ADB,∴∠BDE=ACB=α.

如圖3,當(dāng)點(diǎn)ENA的延長(zhǎng)線上時(shí)

易證1+∠2=CAN+∠DAC

∵∠2=ADM=CBD=CAN,∴∠1=CAD=ACB=α,∴∠BDE=180°﹣α.

綜上所述BDE180°﹣α.

故答案為:α180°﹣α.

3)如圖4,當(dāng)BN=BC=時(shí),AKBCK,連結(jié)CD

ADBC==,AD=,AC=3,易證△ADC是直角三角形則四邊形ADCK是矩形,AKN≌△DCFCF=NK=BKBN==

如圖5,當(dāng)CN=BC=時(shí),AKBCK,DHBCH

ADBC,==2,AD=6易證△ACD是直角三角形,由△ACK∽△CDH,可得CH=AK=,由△AKN≌△DHF,可得KN=FH=,CF=CHFH=4

綜上所述CF的長(zhǎng)為4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=7,點(diǎn)D在邊BC上,CD=3,⊙A的半徑長(zhǎng)為3,⊙D與⊙A相交,且點(diǎn)B在⊙D外,那么⊙D的半徑長(zhǎng)r的取值范圍是( )

A.1<r<4
B.2<r<4
C.1<r<8
D.2<r<8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的直角頂點(diǎn)Ax軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3,),點(diǎn)C的坐標(biāo)為(1,0),且∠B=60°,點(diǎn)P為斜邊OB上的一個(gè)動(dòng)點(diǎn),則PA+PC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D是△ABC的邊BC上一點(diǎn),AB=4,AD=2,∠DAC=∠B.如果△ABD的面積為15,那么△ACD的面積為( )
A.15
B.10
C.
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC,∠C=90°,∠B=30°,以點(diǎn)A為圓心任意長(zhǎng)為半徑畫弧分別交AB,AC于點(diǎn)MN,再分別以點(diǎn)M,N為圓心大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法:①AD∠BAC的平分線;②∠ADC=60°;③點(diǎn)DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說(shuō)法的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一列按一定順序和規(guī)律排列的數(shù):
第一個(gè)數(shù)是 ;
第二個(gè)數(shù)是 ;
第三個(gè)數(shù)是 ;

對(duì)任何正整數(shù)n,第n個(gè)數(shù)與第(n+1)個(gè)數(shù)的和等于
(1)經(jīng)過(guò)探究,我們發(fā)現(xiàn):
設(shè)這列數(shù)的第5個(gè)數(shù)為a,那么 , ,哪個(gè)正確?
請(qǐng)你直接寫出正確的結(jié)論;
(2)請(qǐng)你觀察第1個(gè)數(shù)、第2個(gè)數(shù)、第3個(gè)數(shù),猜想這列數(shù)的第n個(gè)數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿足“第n個(gè)數(shù)與第(n+1)個(gè)數(shù)的和等于 ”;
(3)設(shè)M表示 , , ,…, ,這2016個(gè)數(shù)的和,即 ,
求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),ABC的邊BCx軸上,A,C兩點(diǎn)的坐標(biāo)分別為A(0,m),Cn,0),B(﹣5,0),且(n﹣3)2+ =0.一動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2單位長(zhǎng)度的速度沿射線BO勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.

(1)求A,C兩點(diǎn)的坐標(biāo);

(2)連接PA,若PAB為等腰三角形,求點(diǎn)P的坐標(biāo);

(3)當(dāng)點(diǎn)P在線段BO上運(yùn)動(dòng)時(shí),在y軸上是否存在點(diǎn)Q,使POQAOC全等?若存在,請(qǐng)求出t的值并直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ACB中,∠ACB=90°,D、E為斜邊AB上的兩點(diǎn),且BD=BC,AE=AC,∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李從西安通過(guò)某快遞公司給在南昌的外婆寄一盒櫻桃,快遞時(shí),他了解到這個(gè)公司除收取每次6元的包裝費(fèi)外,櫻桃不超過(guò)1kg收費(fèi)22元,超過(guò)1kg,則超出部分按每千克10元加收費(fèi)用.設(shè)該公司從西安到南昌快遞櫻桃的費(fèi)用為y(元),所寄櫻桃為x(kg).

(1)求yx之間的函數(shù)關(guān)系式;

(2)已知小李給外婆快寄了2.5kg櫻桃,請(qǐng)你求出這次快寄的費(fèi)用是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案