【題目】如圖,AB是⊙O的直徑,弦DE垂直半徑OA,C為垂足,DE=6,連接DB,,過點(diǎn)E作EM∥BD,交BA的延長線于點(diǎn)M.
(1)求的半徑;
(2)求證:EM是⊙O的切線;
(3)若弦DF與直徑AB相交于點(diǎn)P,當(dāng)∠APD=45°時,求圖中陰影部分的面積.
【答案】⑴ OE=2;⑵ 見詳解 ⑶
【解析】
(1) 連結(jié)OE,根據(jù)垂徑定理可以得到,得到∠AOE =60,OC=OE,根據(jù)勾股定理即可求出.
(2) 只要證明出∠OEM=90°即可,由(1)得到∠AOE =60,根據(jù)EM∥BD,∠B=∠M=30°,即可求出.
(3) 連接OF,根據(jù)∠APD=45°,可以求出∠EDF=45,根據(jù)圓心角為2倍的圓周角,得到∠BOE,用扇形OEF面積減去三角形OEF面積即可.
(1)連結(jié)OE
∵DE垂直OA,∠B=30°∴CE=DE=3,
∴∠AOE=2∠B=60,∴∠CEO=30°,OC=OE
由勾股定理得OE=
(2) ∵EM∥BD,
∴∠M=∠B=30,∠M+∠AOE=90
∴∠OEM=90,即OE⊥ME,
∴EM是⊙O的切線
(3)再連結(jié)OF,當(dāng)∠APD=45時,∠EDF=45, ∴∠EOF=90
S陰影= =
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=60°,以O為圓心,以任意長為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點(diǎn)P,以OP為邊作∠POC=15°,則∠BOC的度數(shù)為( )
A.15°B.45°C.15°或30°D.15°或45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汕頭國際馬拉松賽事設(shè)有“馬拉松(公里)”,“半程馬拉松(公里)”,“迷你馬拉松(公里)”三個項(xiàng)目,小紅和小青參加了該賽事的志愿者服務(wù)工作,組委會將志愿者隨機(jī)分配到三個項(xiàng)目組.
(1)小紅被分配到“馬拉松(公里)”項(xiàng)目組的概率為___________.
(2)用樹狀圖或列表法求小紅和小青被分到同一個項(xiàng)目組進(jìn)行志愿服務(wù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,分別以AB,AC為斜邊作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,連接DE.若DE=5,則BC長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a、b、c是常數(shù),a<0)經(jīng)過點(diǎn)A(-1,0)、B(3,0),頂點(diǎn)為C,則下列說法正確的個數(shù)是( )
①當(dāng)-1<x<3時,ax2+bx+c>0;②當(dāng)△ABC是直角三角形,則a=- ;
③若m≤x≤m+3時,二次函數(shù)y=ax2+bx+c的最大值為am2+bm+c,則m≥3.
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋中裝有4張卡片,分別印有數(shù)字1、2、3、6,這4張卡片除印有的數(shù)字不同外,其余都相同.
(1)攪勻后從中任意摸出1張卡片,摸到印有奇數(shù)卡片的概率為_______;
(2)攪勻后從中任意摸出1張卡片,將該卡片印有的數(shù)字記為,再從剩余3張卡片中任意摸出1張卡片,將該卡片印有的數(shù)字記為,請用列表或畫樹狀圖的方法求出點(diǎn)在反比例函數(shù)圖像上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=2,BC=4,點(diǎn)P在邊BC上,聯(lián)結(jié)AP,將△ABP繞著點(diǎn)A旋轉(zhuǎn),使得點(diǎn)P與邊AC的中點(diǎn)M重合,點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)B′,則BB′的長等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于D,延長AO交⊙O于E,連接CD,CE,若CE是⊙O的切線,
(1)求證:CD是⊙O的切線;
(2)若BC=3,AB=5,求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明在地面A處利用測角儀觀測氣球C的仰角為37°,然后他沿正對氣球方向前進(jìn)了40m到達(dá)地面B處,此時觀測氣球的仰角為45°.求氣球的高度是多少?參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com