【題目】補全證明過程,即在橫線處填上遺漏的結(jié)論或理由. 已知:如圖,∠1=∠2,∠C=∠D.
求證:∠A=∠F.
證明:∵∠1=∠2(已知)
又∠1=∠DMN()
∴∠2=∠(等量代換)
∴DB∥EC()
∴∠C=∠ABD()
∵∠C=∠D(已知)
∴∠D=∠ABD()
∴(內(nèi)錯角相等,兩直線平行)
∴∠A=∠F()
【答案】對頂角相等;DMN;同位角相等,兩直線平行;兩直線平行,同位角相等;等量代換;DF∥AC;兩直線平行,內(nèi)錯角相等
【解析】證明:∵∠1=∠2(已知), 又∵∠1=∠DMN(對頂角相等),
∴∠2=∠DMN(等量代換),
∴DB∥EC(同位角相等,兩直線平行),
∴∠C=∠ABD(兩直線平行,同位角相等),
∵∠C=∠D(已知),
∴∠D=∠ABD(等量代換),
∴DF∥AC (內(nèi)錯角相等,兩直線平行),
∴∠A=∠F(兩直線平行,內(nèi)錯角相等),
所以答案是:對頂角相等,DMN,同位角相等,兩直線平行,兩直線平行,同位角相等,等量代換,DF∥AC,兩直線平行,內(nèi)錯角相等.
【考點精析】認(rèn)真審題,首先需要了解平行線的判定與性質(zhì)(由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班50名學(xué)生的一次安全知識競賽成績(滿分為10分)分布如表所示:
成績(分) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人數(shù)(人) | 0 | 0 | 0 | 1 | 0 | 1 | 3 | 5 | 6 | 19 | 15 |
這次安全知識競賽成績的眾數(shù)是( )
A. 5分 B. 6分 C. 9分 D. 10分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以點A為頂點作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如圖1所示放置,使得一直角邊重合,連接BD、CE.
(1)試判斷BD、CE的數(shù)量關(guān)系,并說明理由;
(2)延長BD交CE于點F,試求∠BFC的度數(shù);
(3)把兩個等腰直角三角形按如圖2放置,(1)中的結(jié)論是否仍成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=mx﹣3m2+12,請按要求解答問題:
(1)m為何值時,函數(shù)圖象過原點,且y隨x的增大而減小?
(2)若函數(shù)圖象平行于直線y=﹣x,求一次函數(shù)解析式;
(3)若點(0,﹣15)在函數(shù)圖象上,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年黑龍江省地區(qū)生產(chǎn)總值實現(xiàn)15083億元,用科學(xué)記數(shù)法表示15083億元為_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,點D為AC邊上的動點,點D從點C出發(fā),沿邊CA向A運動,當(dāng)運動到點A時停止,若設(shè)點D運動的速度為每秒1個單位長度,當(dāng)運動時間t為多少秒時,以點C、B、D為頂點的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD∥GE,AQ平分∠FAC,交BD于Q,∠GFA=50°,∠Q=25°,則∠ACB的度數(shù)( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算正確的是( 。
A.(x+y)2=x2+y2
B.(x﹣y)2=x2﹣2xy﹣y2
C.(x+1)(x﹣1)=x2﹣1
D.(x﹣1)2=x2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)計算:
①(﹣11)+5
②5﹣(﹣ )+(﹣7)﹣
③(﹣3)2+(﹣16)÷[(﹣ )÷(﹣ )]
(2)化簡并求值
3(x2y+xy2)﹣2(xy+xy2)﹣ x2y,其中x是絕對值等于2的負(fù)數(shù),y是最大的負(fù)整數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com