【題目】某校積極開展“陽光體育”活動,共開設(shè)了跳繩、足球、籃球、跑步四種運動項目,為了解學(xué)生最喜愛哪一種項目,隨機抽取了部分學(xué)生進行調(diào)查,并繪制了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)該校共有1200名學(xué)生,請估計全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?
【答案】
(1)解:觀察條形統(tǒng)計圖與扇形統(tǒng)計圖知:喜歡跳繩的有10人,占25%,
故總?cè)藬?shù)有10÷25%=40人
(2)解:喜歡足球的有40×30%=12人,
喜歡跑步的有40﹣10﹣15﹣12=3人,
故條形統(tǒng)計圖補充為:
(3)解:全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多1200× =90人
【解析】(1)用喜歡跳繩的人數(shù)除以其所占的百分比即可求得被調(diào)查的總?cè)藬?shù);(2)用總?cè)藬?shù)乘以足球所占的百分比即可求得喜歡足球的人數(shù),用總數(shù)減去其他各小組的人數(shù)即可求得喜歡跑步的人數(shù),從而補全條形統(tǒng)計圖;(3)用樣本估計總體即可確定最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:45°<∠A<90°,則下列各式成立的是( )
A.sinA=cosA
B.sinA>cosA
C.sinA>tanA
D.sinA<cosA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與⊙O相切于點B,BC為⊙O的弦,OC⊥OA,OA與BC相交于點P.
(1)求證:AP=AB;
(2)若OB=4,AB=3,求線段BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩點在反比例函數(shù)y= 的圖象上,C,D兩點在反比例函數(shù)y= 的圖象上,AC⊥y軸于點E,BD⊥y軸于點F,AC=2,BD=1,EF=3,則k1﹣k2的值是( )
A.6
B.4
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點,與y軸交于點C.
(1)求拋物線的函數(shù)表達式;
(2)若點D是y軸上的一點,且以B,C,D為頂點的三角形與△ABC相似,求點D的坐標;
(3)如圖2,CE∥x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC,CE分別交于點F,G,試探究當(dāng)點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標及最大面積;
(4)若點K為拋物線的頂點,點M(4,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQKM的周長最小,求出點P,Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點M是第一象限內(nèi)一點,過M的直線分別交x軸,y軸的正半軸于A,B兩點,且M是AB的中點.以O(shè)M為直徑的⊙P分別交x軸,y軸于C,D兩點,交直線AB于點E(位于點M右下方),連結(jié)DE交OM于點K.
(1)若點M的坐標為(3,4), ①求A,B兩點的坐標;
②求ME的長.
(2)若 =3,求∠OBA的度數(shù).
(3)設(shè)tan∠OBA=x(0<x<1), =y,直接寫出y關(guān)于x的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50米/分的速度沿同一路線行走.設(shè)甲、乙兩人相距s(米),甲行走的時間為t(分),s關(guān)于t的函數(shù)圖象的一部分如圖所示.
(1)求甲行走的速度;
(2)在坐標系中,補畫s關(guān)于t的函數(shù)圖象的其余部分;
(3)問甲、乙兩人何時相距360米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABC1D1的邊長為1,延長C1D1到A1 , 以A1C1為邊向右作正方形A1C1C2D2 , 延長C2D2到A2 , 以A2C2為邊向右作正方形A2C2C3D3(如圖所示),以此類推….若A1C1=2,且點A,D2 , D3 , …,D10都在同一直線上,則正方形A9C9C10D10的邊長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本中有一道作業(yè)題: 有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長是多少mm?
小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.
(1)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少mm?請你計算.
(2)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達到這個最大值時矩形零件的兩條邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com